Basar Cenik
University of Texas Southwestern Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Basar Cenik.
Journal of Biological Chemistry | 2011
Chantelle F. Sephton; Can Cenik; Alper Kucukural; Eric B. Dammer; Basar Cenik; YuHong Han; Colleen M. Dewey; Frederick P. Roth; Joachim Herz; Junmin Peng; Melissa J. Moore; Gang Yu
TAR DNA-binding protein 43 (TDP-43) is associated with a spectrum of neurodegenerative diseases. Although TDP-43 resembles heterogeneous nuclear ribonucleoproteins, its RNA targets and physiological protein partners remain unknown. Here we identify RNA targets of TDP-43 from cortical neurons by RNA immunoprecipitation followed by deep sequencing (RIP-seq). The canonical TDP-43 binding site (TG)n is 55.1-fold enriched, and moreover, a variant with adenine in the middle, (TG)nTA(TG)m, is highly abundant among reads in our TDP-43 RIP-seq library. TDP-43 RNA targets can be divided into three different groups: those primarily binding in introns, in exons, and across both introns and exons. TDP-43 RNA targets are particularly enriched for Gene Ontology terms related to synaptic function, RNA metabolism, and neuronal development. Furthermore, TDP-43 binds to a number of RNAs encoding for proteins implicated in neurodegeneration, including TDP-43 itself, FUS/TLS, progranulin, Tau, and ataxin 1 and -2. We also identify 25 proteins that co-purify with TDP-43 from rodent brain nuclear extracts. Prominent among them are nuclear proteins involved in pre-mRNA splicing and RNA stability and transport. Also notable are two neuron-enriched proteins, methyl CpG-binding protein 2 and polypyrimidine tract-binding protein 2 (PTBP2). A PTBP2 consensus RNA binding motif is enriched in the TDP-43 RIP-seq library, suggesting that PTBP2 may co-regulate TDP-43 RNA targets. This work thus reveals the protein and RNA components of the TDP-43-containing ribonucleoprotein complexes and provides a framework for understanding how dysregulation of TDP-43 in RNA metabolism contributes to neurodegeneration.
Molecular and Cellular Biology | 2011
Colleen M. Dewey; Basar Cenik; Chantelle F. Sephton; Daniel R. Dries; Paul R. Mayer; Shannon K. Good; Brett Johnson; Joachim Herz; Gang Yu
ABSTRACT TDP-43, or TAR DNA-binding protein 43, is a pathological marker of a spectrum of neurodegenerative disorders, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. TDP-43 is an RNA/DNA-binding protein implicated in transcriptional and posttranscriptional regulation. Recent work also suggests that TDP-43 associates with cytoplasmic stress granules, which are transient structures that form in response to stress. In this study, we establish sorbitol as a novel physiological stressor that directs TDP-43 to stress granules in Hek293T cells and primary cultured glia. We quantify the association of TDP-43 with stress granules over time and show that stress granule association and size are dependent on the glycine-rich region of TDP-43, which harbors the majority of pathogenic mutations. Moreover, we establish that cells harboring wild-type and mutant TDP-43 have distinct stress responses: mutant TDP-43 forms significantly larger stress granules, and is incorporated into stress granules earlier, than wild-type TDP-43; in striking contrast, wild-type TDP-43 forms more stress granules over time, but the granule size remains relatively unchanged. We propose that mutant TDP-43 alters stress granule dynamics, which may contribute to the progression of TDP-43 proteinopathies.
Journal of Biological Chemistry | 2012
Basar Cenik; Chantelle F. Sephton; Bercin Kutluk Cenik; Joachim Herz; Gang Yu
GRN mutations cause frontotemporal lobar degeneration with TDP-43-positive inclusions. The mechanism of pathogenesis is haploinsufficiency. Recently, homozygous GRN mutations were detected in two patients with neuronal ceroid lipofuscinosis, a lysosomal storage disease. It is unknown whether the pathogenesis of these two conditions is related. Progranulin is cleaved into smaller peptides called granulins. Progranulin and granulins are attributed with roles in cancer, inflammation, and neuronal physiology. Cell surface receptors for progranulin, but not granulin peptides, have been reported. Revealing the cell surface receptors and the intracellular functions of granulins and progranulin is crucial for understanding their contributions to neurodegeneration.
Journal of Biological Chemistry | 2011
Basar Cenik; Chantelle F. Sephton; Colleen M. Dewey; Xunde Xian; Shuguang Wei; Kimberley Yu; Wenze Niu; Giovanni Coppola; Sarah E. Coughlin; Suzee E. Lee; Daniel R. Dries; Sandra Almeida; Daniel H. Geschwind; Fen-Biao Gao; Bruce L. Miller; Robert V. Farese; Bruce A. Posner; Gang Yu; Joachim Herz
Progranulin (GRN) haploinsufficiency is a frequent cause of familial frontotemporal dementia, a currently untreatable progressive neurodegenerative disease. By chemical library screening, we identified suberoylanilide hydroxamic acid (SAHA), a Food and Drug Administration-approved histone deacetylase inhibitor, as an enhancer of GRN expression. SAHA dose-dependently increased GRN mRNA and protein levels in cultured cells and restored near-normal GRN expression in haploinsufficient cells from human subjects. Although elevation of secreted progranulin levels through a post-transcriptional mechanism has recently been reported, this is, to the best of our knowledge, the first report of a small molecule enhancer of progranulin transcription. SAHA has demonstrated therapeutic potential in other neurodegenerative diseases and thus holds promise as a first generation drug for the prevention and treatment of frontotemporal dementia.
The Journal of Neuroscience | 2013
Xi Chen; Jianjun Chang; Qiudong Deng; Jie Xu; Thi A. Nguyen; Lauren Herl Martens; Basar Cenik; Georgia Taylor; Kathryn F. Hudson; Jaegwon Chung; Kimberley Yu; Phillip Yu; Joachim Herz; Robert V. Farese; Thomas Kukar; Malú G. Tansey
Progranulin (PGRN) is a secreted glycoprotein expressed in neurons and glia that is implicated in neuronal survival on the basis that mutations in the GRN gene causing haploinsufficiency result in a familial form of frontotemporal dementia (FTD). Recently, a direct interaction between PGRN and tumor necrosis factor receptors (TNFR I/II) was reported and proposed to be a mechanism by which PGRN exerts anti-inflammatory activity, raising the possibility that aberrant PGRN–TNFR interactions underlie the molecular basis for neuroinflammation in frontotemporal lobar degeneration pathogenesis. Here, we report that we find no evidence for a direct physical or functional interaction between PGRN and TNFRs. Using coimmunoprecipitation and surface plasmon resonance (SPR) we replicated the interaction between PGRN and sortilin and that between TNF and TNFRI/II, but not the interaction between PGRN and TNFRs. Recombinant PGRN or transfection of a cDNA encoding PGRN did not antagonize TNF-dependent NFκB, Akt, and Erk1/2 pathway activation; inflammatory gene expression; or secretion of inflammatory factors in BV2 microglia and bone marrow-derived macrophages (BMDMs). Moreover, PGRN did not antagonize TNF-induced cytotoxicity on dopaminergic neuroblastoma cells. Last, co-addition or pre-incubation with various N- or C-terminal-tagged recombinant PGRNs did not alter lipopolysaccharide-induced inflammatory gene expression or cytokine secretion in any cell type examined, including BMDMs from Grn+/− or Grn−/− mice. Therefore, the neuroinflammatory phenotype associated with PGRN deficiency in the CNS is not a direct consequence of the loss of TNF antagonism by PGRN, but may be a secondary response by glia to disrupted interactions between PGRN and Sortilin and/or other binding partners yet to be identified.
Biological Chemistry | 2012
Chantelle F. Sephton; Basar Cenik; Bercin Kutluk Cenik; Joachim Herz; Gang Yu
Abstract From the earliest stages of embryogenesis and throughout life, transcriptional regulation is carefully orchestrated in order to generate, shape, and reshape the central nervous system (CNS). TAR DNA-binding protein 43 (TDP-43) is identified as a regulator of essential transcriptional events in the CNS. Evidence for its importance comes from the identification of TDP-43 protein aggregates and genetic mutations in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Efforts are being made to learn more about the biological function of TDP-43 and gain a better understanding of its role in neurodegeneration. TDP-43 RNA targets and protein interactions have now been identified, and in vivo evidence shows that TDP-43 is essential in CNS development and function. This review will highlight aspects of these findings.
Biological Chemistry | 2012
Chantelle F. Sephton; Basar Cenik; Bercin Kutluk Cenik; Joachim Herz; Gang Yu
Abstract From the earliest stages of embryogenesis and throughout life, transcriptional regulation is carefully orchestrated in order to generate, shape, and reshape the central nervous system (CNS). TAR DNA-binding protein 43 (TDP-43) is identified as a regulator of essential transcriptional events in the CNS. Evidence for its importance comes from the identification of TDP-43 protein aggregates and genetic mutations in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Efforts are being made to learn more about the biological function of TDP-43 and gain a better understanding of its role in neurodegeneration. TDP-43 RNA targets and protein interactions have now been identified, and in vivo evidence shows that TDP-43 is essential in CNS development and function. This review will highlight aspects of these findings.
Nature Communications | 2016
Alexandra M. Nicholson; Ni Cole A. Finch; Marcio Almeida; Ralph B. Perkerson; Marka van Blitterswijk; Aleksandra Wojtas; Basar Cenik; Sergio Rotondo; Venette Inskeep; Laura Almasy; Thomas D. Dyer; Juan Manuel Peralta; Goo Jun; Andrew R. Wood; Timothy M. Frayling; Christian Fuchsberger; Sharon P. Fowler; Tanya M. Teslovich; Alisa K. Manning; Satish Kumar; Joanne E. Curran; Donna M. Lehman; Gonçalo R. Abecasis; Ravindranath Duggirala; Cyril Pottier; Haaris A. Zahir; Julia E. Crook; Anna Karydas; Laura L. Mitic; Ying Sun
Progranulin (GRN) loss-of-function mutations leading to progranulin protein (PGRN) haploinsufficiency are prevalent genetic causes of frontotemporal dementia. Reports also indicated PGRN-mediated neuroprotection in models of Alzheimers and Parkinsons disease; thus, increasing PGRN levels is a promising therapeutic for multiple disorders. To uncover novel PGRN regulators, we linked whole-genome sequence data from 920 individuals with plasma PGRN levels and identified the prosaposin (PSAP) locus as a new locus significantly associated with plasma PGRN levels. Here we show that both PSAP reduction and overexpression lead to significantly elevated extracellular PGRN levels. Intriguingly, PSAP knockdown increases PGRN monomers, whereas PSAP overexpression increases PGRN oligomers, partly through a protein–protein interaction. PSAP-induced changes in PGRN levels and oligomerization replicate in human-derived fibroblasts obtained from a GRN mutation carrier, further supporting PSAP as a potential PGRN-related therapeutic target. Future studies should focus on addressing the relevance and cellular mechanism by which PGRN oligomeric species provide neuroprotection.
Cell Reports | 2017
Bret M. Evers; Carlos Rodriguez-Navas; Rachel Tesla; Janine Prange-Kiel; Catherine R. Wasser; Kyoung Shin Yoo; Jeffrey G. McDonald; Basar Cenik; Thomas A. Ravenscroft; Florian Plattner; Rosa Rademakers; Gang Yu; Charles L. White; Joachim Herz
Summary Defective lysosomal function defines many neurodegenerative diseases, such as neuronal ceroid lipofuscinoses (NCL) and Niemann-Pick type C (NPC), and is implicated in Alzheimers disease (AD) and frontotemporal lobar degeneration (FTLD-TDP) with progranulin (PGRN) deficiency. Here, we show that PGRN is involved in lysosomal homeostasis and lipid metabolism. PGRN deficiency alters lysosome abundance and morphology in mouse neurons. Using an unbiased lipidomic approach, we found that brain lipid composition in humans and mice with PGRN deficiency shows disease-specific differences that distinguish them from normal and other pathologic groups. PGRN loss leads to an accumulation of polyunsaturated triacylglycerides, as well as a reduction of diacylglycerides and phosphatidylserines in fibroblast and enriched lysosome lipidomes. Transcriptomic analysis of PGRN-deficient mouse brains revealed distinct expression patterns of lysosomal, immune-related, and lipid metabolic genes. These findings have implications for the pathogenesis of FTLD-TDP due to PGRN deficiency and suggest lysosomal dysfunction as an underlying mechanism.
Journal of Biological Chemistry | 2013
Andrew D. Nguyen; Thi A. Nguyen; Basar Cenik; Gang Yu; Joachim Herz; Tobias C. Walther; W. Sean Davidson; Robert V. Farese
Background: Progranulin is a secreted, anti-inflammatory glycoprotein, suggested to be a component of high density lipoproteins (HDL). Results: Studies in cells and plasma revealed secreted progranulin exists as a homodimer, does not bind lipids, and is not detected on HDL. Conclusion: Secreted progranulin exists as a homodimer and is not an HDL component. Significance: These data provide insights into the molecular properties of secreted progranulin. Progranulin is a secreted glycoprotein, and the GRN gene is mutated in some cases of frontotemporal dementia. Progranulin has also been implicated in cell growth, wound healing, inflammation, and cancer. We investigated the molecular nature of secreted progranulin and provide evidence that progranulin exists as a homodimer. Although recombinant progranulin has a molecular mass of ∼85 kDa by SDS-PAGE, it elutes in fractions corresponding to ∼170–180 kDa by gel-filtration chromatography. Additionally, recombinant progranulin can be intermolecularly cross-linked, yielding a complex corresponding to a dimer (∼180 kDa), and progranulins containing different epitope tags physically interact. In plasma, progranulin similarly forms complexes of ∼180–190 kDa. Although progranulin partially co-fractionated with high density lipoproteins (HDL) by gel-filtration chromatography, we found no evidence that progranulin in mouse or human plasma is a component of HDL either by ultracentrifugation or by lipid binding assays. We conclude that circulating progranulin exists as a dimer and is not likely a component of HDL.