Basem Shomar
Qatar Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Basem Shomar.
Environmental Research | 2014
Nora Kuiper; Candace Rowell; Jerome O. Nriagu; Basem Shomar
Qatar׳s farm workers provide a unique population for exposure study: they are young, healthy males. This study combined trace element profiles in urine and toenail with survey information from 239 farm workers to assess the extent to which the biomarkers provide complementary exposure information. Urinary Mo levels (average=114 µg/L) were elevated; average urinary values (µg/L) for all other elements were: V (1.02), Cr (0.55), Mn (2.15), Fe (34.1), Co (0.47), Ni (2.95), Cu (15.0), As (47.8), Se (25.7), Cd (1.09), Ba (22.5), Pb (2.50) and U (0.15). Average toenail concentrations (mg/kg) were: Mn (2.48), Cu (4.43), As (0.26), Se (0.58), Mo (0.07), Cd (0.03), Ba (1.00), Pb (0.51) and U (0.02). No significant association was found between corresponding elements in urine and toenails. Elemental profiles suggest groundwater (with the exception of Mo) and soil-dust-crop exposure pathways cannot account for elemental variations. The main factors moderating trace element contents are related to depuration processes involving participants׳ trace element body burden prior to work in Qatar, and interactions of trace element metabolic cycles which over-ride the exposure footprint. Toenail and urine need to be carefully validated before reliable use as biomarkers of exposure in general populations for most elements in the study.
Environmental Research | 2015
Subhamoy Bhowmick; Amit K. Kundu; Jishnu Adhikari; Debankur Chatterjee; Mònica Iglesias; Jerome O. Nriagu; Debendra Nath Guha Mazumder; Basem Shomar; Debashis Chatterjee
Communities in many parts of the world are unintentionally exposed to arsenic (As) and other toxic metals through ingestion of local drinking water and foods. The concentrations of individual toxic metals often exceed their guidelines in drinking water but the health risks associated with such multiple-metal exposures have yet to receive much attention. This study examines the co-occurrence of toxic metals in groundwater samples collected from As-rich areas of Nadia district, West Bengal, India. Arsenic in groundwater (range: 12-1064 µg L(-1); mean ± S.D: 329±294 µg L(-1)) was the most important contaminant with concentrations well above the WHO guideline of 10 µg L(-1). Another important toxic metal in the study area was manganese (Mn) with average concentration of 202±153 µg L(-1), range of 18-604 µg L(-1). The average concentrations (µg L(-1)) of other elements in groundwater were: Cr (5.6±5.9), Mo (3.5±2.1), Ni (8.3±8.7), Pb (2.9±1.3), Ba (119±43), Zn (56±40), Se (0.60±0.33), U (0.50±0.74). Saliva collected from the male participants of the area had mean concentrations of 6.3±7.0 µg As L(-1) (0.70-29 µg L(-1)), 5.4±5.5 µg Mn L(-1) (0.69-22 µg L(-1)), 2.6±3.1 µg Ni L(-1) (0.15-13 µg L(-1)), 0.78±1.0µg Cr L(-1) (<DL-5.9 µg L(-1)), 0.94±0.90 µg Pb L(-1) (<DL-4.2 µg L(-1)), 0.56±0.37 µg Se L(-1) (0.11-1.5 µg L(-1)) and 194±54 µg Zn L(-1) (112-369 µg L(-1)). The high concentrations of salivary As and Mn are believed to be indicative of intake from the groundwater. The clustering of salivary As and Mn in principal component analysis further indicated influence of the common exposure source. Zinc and selenium comprised a separate component presumably reflecting the local deficiencies in intakes of these essential elements from drinking water and foodstuff. Thus the study reveals that the concentration of other metals beside As must be monitored in drinking water before implementation of any policies to provide safe water to the affected communities.
Food and Chemical Toxicology | 2014
Candace Rowell; Nora Kuiper; Khalid Al-Saad; Jerome O. Nriagu; Basem Shomar
Qatar is dependent on importation of rice, its staple dish, and is therefore susceptible to compromises of food quality in the global market. This market basket study assesses potential health risks of As exposure from rice consumption in Qatar and examines its contribution to the recommended nutritional intakes (RNI) for Zn and Se. Fifty-six rice types and 12 products sold in Qatar were analyzed by ICP/MS. Mean concentrations and ranges were 96.2±54.1μg/kg (9.76-258μg/kg) for As; 12.5±5.35mg/kg (2.79-29.9mg/kg) for Zn and 103±113μg/kg (<5.94-422μg/kg) for Se. Calculated risk quotient shows rice consumption in Qatar is not a significant route of As exposure but can contribute up to 100% and 50% of the RNI for Se and Zn, respectively. Results indicate that children in Qatar may be at elevated risk of arsenic exposure from rice-based infant cereals but more data is needed to obtain a definitive assessment.
Environmental Science and Pollution Research | 2015
Basem Shomar; Anne Dare
Wastewater management is not limited to the technology used to collect and treat wastewater. It begins with the early planning phase of building a society and includes considerations of how that society will grow. Therefore, history, culture, religion, and socioeconomy are important components to include in any relevant and integrated studies of wastewater management and reuse. Engineering, health, chemistry, biology, food production, cultural heritage, and the needs of people of all ages should be considered together when making management decisions regarding issues so intimately tied with humanity as water and sanitation. Other escalating challenges such as poverty, food, and water scarcity, migration and instability, flooding and catastrophes, diseases and mortality, etc. should also be considered as part of wastewater management and reuse planning. Emerging contaminants could be associated with the urbanization, modernization, and industrialization of several countries. Several arid countries have developed water security strategies where wastewater reuse is a major component. The existing wastewater treatment technologies in these countries are, in most cases, unable to remove such contaminants which may affect irrigation waters, industrial products, groundwater, etc. People would have to accept that the food on their tables could be irrigated with treated wastewater that they generated a few months ago, even if very advanced technologies were used to treat it. The purpose of this review is to highlight multidisciplinary areas of research on wastewater and to propose applicable and affordable mechanisms by which we may consider wastewater as a legitimate resource.
Journal of Water and Health | 2015
Candace Rowell; Nora Kuiper; Basem Shomar
This study compared physicochemical properties, anion and carbon content and major and trace elements in desalinated and non-desalinated bottled water available in Qatar, and assessed the potential health risks associated with prolonged consumption of desalinated water. Results indicate that Qatars population is not at elevated risk of dietary exposure to As (mean = 666 ng/L), Ba (48.0 μg/L), Be (9.27 ng/L), Cd (20.1 ng/L), Cr (874 ng/L), Pb (258 ng/L), Sb (475 ng/L) and U (533 ng/L) from consumption of both desalinated and non-desalinated bottled water types available in the country. Consumers who primarily consume desalinated water brands further minimize risk of exposure to heavy metals as levels were significantly lower than in non-desalinated bottled water. Desalinated bottled water was not a significant contributor to recommended daily intakes for Ca, Mg and F(-) for adults and children and may increase risk of deficiencies. Desalinated bottled water accounted for only 3% of the Institute of Medicine (IOM) adequate intake (AI) for Ca, 5-6% of the recommended daily allowance for Mg and 4% of the AI for F among adults. For children desalinated water contributed 2-3% of the IOM AICa, 3-10% of the RDA(Mg) and 3-9% of the AIF.
Environmental Research | 2014
Basem Shomar; Khalid Al-Saad; Jerome O. Nriagu
We used a combination of subjective (questionnaire) and objective (urinary metabolites) measurements to evaluate factors that can predict the exposure of farm workers in Qatar to organophosphate pesticides and to assess whether the levels of exposure are associated with any self-reported health outcomes. The results show that pesticides were being extensively mishandled in the farms. Very few (<2%) of the farm workers knew the names of the pesticide they were using, and about one-third of the participants did not know the amount of pesticides to be applied to the crops. Nearly all (96%) of the participants had participated in mixing pesticides together before use and few (29%) used protective clothing while engaged in this operation. A significant number of participants (18%) had no knowledge that pesticides are a health hazard. At least one dialkyllphosphate (DAP) metabolite was detected in every worker. The geometric mean (GM) concentration of the dimethylalkylphosphates (DMAP) was 108 nM (range, from below the limit of detection (LOD) to 351 nM), and the GM for the diethylalkylphosphates (DEAP) was 43 nM (range, LOD-180 nM). The GM for total concentration of the metabolites (DAP) of 146 nM (maximum value estimated to be 531 nM) is below the values that have been reported for farmers in some countries, but higher than the levels in the general populations of many countries. We explored the influence of metal exposure and found consistent and negative relationships between the DAP metabolites and the concentrations of most of the trace elements in the urine of the farm workers; the negative associations were statistically significant for Cr, Mn, Fe, Ni, As, and Pb. We suspect that the negative associations are not source-dependent but may be reflective of antagonistic relationships in human metabolism of OPPs and trace metals; hence we recommend that metals should be included as co-factors in assessing the health effects of OPP exposure.
Desalination and Water Treatment | 2016
Mohamed Darwish; Hassan K. Abdulrahim; Ashraf S. Hassan; Basem Shomar
AbstractWhile thermal desalination processes require minimum pretreatment (mainly screening and chemical additions to prevent scaling), seawater reverse osmosis (SWRO) desalination plants require extensive pretreatment of the feedwater before entering the membranes. As the Arabian Gulf (AG) countries depend on seawater desalination, there is a strategic decision to move gradually to SWRO desalination technologies. The algal bloom (AB) events that have happened in the AG countries raise more concerns about seawater pretreatment. A seawater intake is a key limiting factor and is a real part of pretreatment for high performance desalination process. This paper (second part of a series of three parts) reviews several intake options and their effects on the quality of feed seawater and the major parameters causing membrane fouling, especially bio-fouling. These include the concentrations of algae, bacteria, total organic carbon, particulate and colloidal transparent exopolymer particles (TEP), and the biopolym...
Journal of Water Resource and Protection | 2010
Basem Shomar; Sami Abu Fakher; A. Yahya
Desalination | 2013
Mohamed Darwish; Abdel Hakim Hassabou; Basem Shomar
Journal of Geochemical Exploration | 2014
R. Bou Kheir; Basem Shomar; Mette B. Greve; Mogens Humlekrog Greve