Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Basharat Ali is active.

Publication


Featured researches published by Basharat Ali.


Chemosphere | 2015

Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L.

Rafaqat A. Gill; Lili Zang; Basharat Ali; Muhammad A. Farooq; Peng Cui; Su Yang; Shafaqat Ali; Weijun Zhou

In nature, plants are continuously exposed to several biotic and abiotic stresses. Among these stresses, chromium (Cr) stress is one of the most adverse factors that affects the plant growth, and productivity, and imposes a severe threat for sustainable crop production. In the present study, toxic effects of Cr were studied in hydroponically grown seedlings of four different cultivars of Brassica napus L. viz. ZS 758, Zheda 619, ZY 50 and Zheda 622. The study revealed that elevated Cr concentrations reduced the plant growth rate and biomass as compared to respective controls in all the cultivars and this decline was more obvious in Zheda 622. It was observed that reduction of photosynthetic attributes was more pronounced in Zheda 622 as compared to other cultivars; while, cultivar ZS 758 performed better under Cr-toxicity. Results showed that Cr contents in different parts of seedlings were higher in Zheda 622 as compared to other cultivars and Cr contents were higher in roots than shoots in all the cultivars. Accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) were induced under different Cr concentrations. Results showed that some of anti-oxidant enzyme activities in leaves and roots were increased under the Cr-toxicity. The electron microscopic study showed that ultrastructural damages in leaf mesophyll and root tip cells were more prominent in Zheda 622 as compared to other cultivars under 400 μM Cr stress. Under 400 μM Cr concentration, changes like broken cell wall, immature nucleus, a number of mitochondria, ruptured thylakoid membranes and large size of vacuole and starch grains were observed in leaf ultrastructures. The damages in root cells were observed in the form of disruption of golgibodies and diffused cell wall under the higher concentration of Cr (400 μM). On the basis of these observations, it was concluded that Zheda 622 was found to be more sensitive as followed by ZY 50, Zheda 619 and ZS 758 under Cr-toxicity.


Biologia Plantarum | 2014

Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress

Basharat Ali; P. Qian; R. Jin; Shafaqat Ali; M. Khan; R. Aziz; T. Tian; W. J. Zhou

The effects of cadmium on physiological and ultrastructural characteristics were evaluated in 6-d-old seedlings of two Brassica napus L. cultivars Zheda 619 and ZS 758. Results show that Cd at lower concentration (100 μM) stimulated the seedling growth but at higher concentration (500 μM) inhibited the growth of both cultivars, decreased content of photosynthetic pigments, activities of antioxidant enzymes, and increased the content of malondialdehyde and reactive oxygen species. Cd content in different parts of seedlings was higher in ZS 758 than in Zheda 619. Electron micrographs illustrated that 500 μM Cd severely damaged the leaf and root tip cells of both cultivars. Under Cd stress, the size and number of starch grains, plastoglobuli, and lipid bodies in the chloroplasts increased. In the root tip cells, enlarged vacuoles, diffused cell walls, and undeveloped mitochondria were detected.


Ecotoxicology and Environmental Safety | 2013

5-Aminolevolinic acid mitigates the cadmium-induced changes in Brassica napus as revealed by the biochemical and ultra-structural evaluation of roots.

Basharat Ali; Qiaojing Tao; Yuanfei Zhou; Rafaqat A. Gill; Shafaqat Ali; Muhammad Tariq Rafiq; Ling Xu; Weijun Zhou

In the present study, the ameliorating effects of 5-aminolevulinic acid (ALA) under cadmium (Cd) stress conditions were studied with special emphasis on root morphology and ultra-structure in oilseed rape. For this purpose, plants were treated hydroponically at three different Cd levels (0, 100, 500μM) and foliar spray of ALA with three concentrations (0, 12.5, 25mg/l) simultaneously. The results showed that foliar application of ALA improved the plant growth, root morphology and reduced the reactive oxygen species and malondialdehyde contents in roots under Cd stress conditions. The higher concentration of Cd (500μM) decreased the activities of antioxidants enzymes like catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and glutathione reductase (GR) and also reduced the oxidized glutathione and total glutathione contents in roots. Application of ALA at 25mg/l dosage significantly enhanced the antioxidant activities e.g. APX, SOD, POD, and GSH contents under Cd stress. The microscopic micrographs showed that application of exogenous ALA improved the cell structure under Cd toxicity. A whole cell with developed nucleus, nuclear membrane, smooth cell wall, continuous endoplasmic reticulum, and well shaped mitochondria was observed under the combine application of ALA and Cd. These results suggest that, application of ALA helped the plants to improve root growth, root antioxidant enzymes, and ultra-structural changes in root tip cells under fifteen days Cd-induced stress.


Ecotoxicology and Environmental Safety | 2014

Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety.

Muhammad Tariq Rafiq; Rukhsanda Aziz; Xiaoe Yang; Wendan Xiao; Muhammad Khalid Rafiq; Basharat Ali; Tingqiang Li

Food chain contamination by cadmium (Cd) is globally a serious health concern resulting in chronic abnormalities. Rice is a major staple food of the majority world population, therefore, it is imperative to understand the relationship between the bioavailability of Cd in soils and its accumulation in rice grain. Objectives of this study were to establish environment quality standards for seven different textured soils based on human dietary toxicity, total Cd content in soils and bioavailable portion of Cd in soil. Cadmium concentrations in polished rice grain were best related to total Cd content in Mollisols and Udic Ferrisols with threshold levels of 0.77 and 0.32mgkg(-1), respectively. Contrastingly, Mehlich-3-extractable Cd thresholds were more suitable for Calcaric Regosols, Stagnic Anthrosols, Ustic Cambosols, Typic Haplustalfs and Periudic Argosols with thresholds values of 0.36, 0.22, 0.17, 0.08 and 0.03mgkg(-1), respectively. Stepwise multiple regression analysis indicated that phytoavailability of Cd to rice grain was strongly correlated with Mehlich-3-extractable Cd and soil pH. The empirical model developed in this study explains the combined effects of soil properties and extractable soil Cd content on the phytoavailability of Cd to polished rice grain. This study indicates that accumulation of Cd in rice is influenced greatly by soil type, which should be considered in assessment of soil safety for Cd contamination in rice. This investigation concluded that the selection of proper soil type for food crop production can help us to avoid the toxicity of Cd in our daily diet.


PLOS ONE | 2015

Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L.

Basharat Ali; Rafaqat A. Gill; Su Yang; Muhammad B. Gill; Muhammad A. Farooq; Dan Liu; M. K. Daud; Shafaqat Ali; Weijun Zhou

It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed.


Ecotoxicology and Environmental Safety | 2014

Hydrogen sulfide alleviates lead-induced photosynthetic and ultrastructural changes in oilseed rape.

Basharat Ali; Wenjian Song; W.Z. Hu; X.N. Luo; Rafaqat A. Gill; Jihua Wang; W. J. Zhou

The role of hydrogen sulfide (H2S) in alleviating lead (Pb) induced stress in oilseed rape (Brassica napus L.) was studied under laboratory conditions. Plants were grown hydroponically in greenhouse conditions under three levels (0, 100, and 400 µM) of Pb and three levels (0, 100 and 200 µM) of H2S donor, sodium hydrosulfide (NaHS). Application of H2S significantly improved the plant growth, root morphology, chlorophyll contents and photosynthetic activity in leaves of B. napus under Pb stress. Moreover, exogenously applied H2S significantly lowered the Pb concentration in shoots and roots of plants under Pb stress. The microscopic examination indicated that application of exogenous H2S enabled a clean mesophyll cell having a well developed chloroplast with thylakoid membranes and starch grains. A number of modifications could be observed in root tip cell i.e. mature mitochondria, long endoplasmic reticulum and golgibodies under combined application of H2S and Pb. On the basis of these findings, it can be concluded that application of exogenous H2S has a protective role on plant growth, net photosynthesis rate and ultrastructural changes in B. napus plants under high Pb exposures.


BioMed Research International | 2014

Alleviation of Lead Toxicity by 5-Aminolevulinic Acid Is Related to Elevated Growth, Photosynthesis, and Suppressed Ultrastructural Damages in Oilseed Rape

Tian Tian; Basharat Ali; Yebo Qin; Zaffar Malik; Rafaqat A. Gill; Shafaqat Ali; Weijun Zhou

Lead (Pb) is a widely spread pollutant and leads to diverse morphological and structural changes in the plants. In this study, alleviating role of 5-aminolevulinic acid (ALA) in oilseed rape (Brassica napus L.) was investigated with or without foliar application of ALA (25 mg L−1) in hydroponic environment under different Pb levels (0, 100, and 400 µM). Outcomes stated that plant morphology and photosynthetic attributes were reduced under the application of Pb alone. However, ALA application significantly increased the plant growth and photosynthetic parameters under Pb toxicity. Moreover, ALA also lowered the Pb concentration in shoots and roots under Pb toxicity. The microscopic studies depicted that exogenously applied ALA ameliorated the Pb stress and significantly improved the cell ultrastructures. After application of ALA under Pb stress, mesophyll cell had well-developed nucleus and chloroplast having a number of starch granules. Moreover, micrographs illustrated that root tip cell contained well-developed nucleus, a number of mitochondria, and golgi bodies. These results proposed that under 15-day Pb-induced stress, ALA improved the plant growth, chlorophyll content, photosynthetic parameters, and ultrastructural modifications in leaf mesophyll and root tip cells of the B. napus plants.


Frontiers in Plant Science | 2016

Methyl Jasmonate Regulates Antioxidant Defense and Suppresses Arsenic Uptake in Brassica napus L.

Muhammad A. Farooq; Rafaqat A. Gill; Faisal Islam; Basharat Ali; Hongbo Liu; Jianxiang Xu; Shuiping He; Weijun Zhou

Methyl jasmonate (MJ) is an important plant growth regulator, involved in plant defense against abiotic stresses, however, its possible function in response to metal stress is poorly understood. In the present study, the effect of MJ on physiological and biochemical changes of the plants exposed to arsenic (As) stress were investigated in two Brassica napus L. cultivars (ZS 758 – a black seed type, and Zheda 622 – a yellow seed type). The As treatment at 200 μM was more phytotoxic, however, its combined application with MJ resulted in significant increase in leaf chlorophyll fluorescence, biomass production and reduced malondialdehyde content compared with As stressed plants. The application of MJ minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS) synthesis (H2O2 and OH-) in leaves and the maintenance of high redox states of glutathione and ascorbate. Enhanced enzymatic activities and gene expression of important antioxidants (SOD, APX, CAT, POD), secondary metabolites (PAL, PPO, CAD) and induction of lypoxygenase gene suggest that MJ plays an effective role in the regulation of multiple transcriptional pathways which were involved in oxidative stress responses. The content of As was higher in yellow seeded plants (cv. Zheda 622) as compared to black seeded plants (ZS 758). The application of MJ significantly reduced the As content in leaves and roots of both cultivars. Findings of the present study reveal that MJ improves ROS scavenging through enhanced antioxidant defense system, secondary metabolite and reduced As contents in both the cultivars.


Ecotoxicology and Environmental Safety | 2014

Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus

Basharat Ali; Rafaqat A. Gill; Su Yang; Muhammad B. Gill; Shafaqat Ali; Muhammad Tariq Rafiq; Weijun Zhou

In the present study, role of hydrogen sulfide (H2S) in alleviating cadmium (Cd) induced stress in oilseed rape (Brassica napus L.) was studied under greenhouse conditions. Plants were grown hydroponically under three levels (0, 100, and 500µM) of Cd and three levels (0, 100 and 200µM) of H2S donor, sodium hydrosulfide (NaHS). Results showed that application of H2S significantly improved the plant growth, root morphology, chlorophyll contents, elements uptake and photosynthetic activity in B. napus plants under Cd stress. Moreover, addition of H2S reduced the Cd concentration in the leaves and roots of B. napus plants under Cd-toxicity. Exogenously applied H2S decreased the production of malondialdehyde and reactive oxygen species in the leaves and roots by improving the enzymatic antioxidant activities under Cd stress conditions. The microscopic examination indicated that application of exogenous H2S improved the cell structures and enabled a clean mesophyll cell having a well developed chloroplast with thylakoid membranes, and a number of mitochondria could be observed in the micrographs. A number of modifications could be found in root tip cell i.e. mature mitochondria, long endoplasmic reticulum and golgibodies under combined application of H2S and Cd. On the basis of these findings, it can be concluded that application of exogenous H2S has a protective role on plant growth, photosynthetic parameters, elements uptake, antioxidants enzyme activities and ultrastructural changes in B. napus under high Cd stress conditions.


Biologia Plantarum | 2014

Genotypic variation of the responses to chromium toxicity in four oilseed rape cultivars

Rafaqat A. Gill; X. Q. Hu; Basharat Ali; Chong Yang; J. Y. Shou; Yueyan Wu; W. J. Zhou

Heavy metal toxicity in soils has been considered as major constraints for oilseed rape (Brassica napus L.) production. In the present study, toxic effects of chromium (Cr) were studied in 6-d-old seedlings of four different cultivars of B. napus (ZS 758, Zheda 619, ZY 50, and Zheda 622). The elevated content of Cr inhibited seedling growth, decreased the content of photosynthetic pigments, and activities of antioxidant enzymes, as well as increased the content of malondialdehyde and reactive oxygen species in all the cultivars. The Cr content in different parts of plants was higher in Zheda 622 than in other cultivars. The electron microscopic study showed changes in ultrastructure of leaf mesophyll and root tip cells at 400 μmol Cr, and these changes were more prominent in Zheda 622. An increased size and number of starch grains and number of plastoglobuli, damaged thylakoid membranes, and immature nucleoli and mitochondria were observed in leaves. In roots, enlarged vacuoles, disrupted cell walls and cell membranes, an increased number of mitochondria and a size of nucleolus, as well as plasmolysis (in Zheda 622) were observed. On the basis of these findings, it can be concluded that cv. Zheda 622 was more sensitive to Cr as compared to other three cultivars.

Collaboration


Dive into the Basharat Ali's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Xu

Zhejiang Sci-Tech University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge