Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bashir M. Khan is active.

Publication


Featured researches published by Bashir M. Khan.


Journal of Molecular Modeling | 2009

Phylogenetic analysis, homology modelling, molecular dynamics and docking studies of caffeoyl–CoA- O - methyl transferase (CCoAOMT 1 and 2) isoforms isolated from subabul ( Leucaena leucocephala )

Nataraj Sekhar Pagadala; Manish Arha; P. S. Reddy; Ranadheer Kumar; V. L. Sirisha; S. Prashant; K. Janardhan Reddy; Bashir M. Khan; Shuban K. Rawal; P. B. Kavi Kishor

Caffeoyl coenzyme A O-methyltransferase (CCoAOMT) is an important enzyme that participates in lignin biosynthesis especially in the formation of cell wall ferulic esters of plants. It plays a pivotal role in the methylation of the 3-hydroxyl group of caffeoyl CoA. Two cDNA clones that code CCoAOMT were isolated earlier from subabul and in the present study; 3D models of CCoAOMT1 and CCoAOMT2 enzymes were built using the MODELLER7v7 software to find out the substrate binding sites. These two proteins differed only in two amino acids and may have little or no functional redundancy. Refined models of the proteins were obtained after energy minimization and molecular dynamics in a solvated water layer. The models were further assessed by PROCHECK, WHATCHECK, Verify_3D and ERRAT programs and the results indicated that these models are reliable for further active site and docking analysis. The refined models showed that the two proteins have 9 and 10 α-helices, 6 and 7 β-sheets respectively. The models were used for docking the substrates CoA, SAM, SAH, caffeoyl CoA, feruloyl CoA, 5-hydroxy feruloyl CoA and sinapyl CoA which showed that CoA and caffeoyl CoA are binding with high affinity with the enzymes in the presence and absence of SAM. It appears therefore that caffeoyl CoA is the substrate for both the isoenzymes. The results also indicated that CoA and caffeoyl CoA are binding with higher affinity to CCoAOMT2 than CCoAOMT1. Therefore, CCoAOMT2 conformation is thought to be the active form that exists in subabul. Docking studies indicated that conserved active site residues Met58, Thr60, Val63, Glu82, Gly84, Ser90, Asp160, Asp162, Thr169, Asn191 and Arg203 in CCoAOMT1 and CCoAOMT2 enzymes create the positive charge to balance the negatively charged caffeoyl CoA and play an important role in maintaining a functional conformation and are directly involved in donor-substrate binding.


Physiology and Molecular Biology of Plants | 2009

Improved method of in vitro regeneration in Leucaena leucocephala - a leguminous pulpwood tree species

Noor M. Shaik; Manish Arha; A. Nookaraju; S. K. Gupta; Sameer Srivastava; Arun K. Yadav; Pallavi S. Kulkarni; O. U. Abhilash; Rishi K. Vishwakarma; Somesh Singh; Rajeshri Tatkare; Kannan Chinnathambi; Shuban K. Rawal; Bashir M. Khan

Leucaena leucocephala is a fast growing multipurpose legume tree used for forage, leaf manure, paper and pulp. Lignin in Leucaena pulp adversely influences the quality of paper produced. Developing transgenic Leucaena with altered lignin by genetic engineering demands an optimized regeneration system. The present study deals with optimization of regeneration system for L. leucocephala cv. K636. Multiple shoot induction from the cotyledonary nodes of L. leucocephala was studied in response to cytokinins, thidiazuron (TDZ) and N6-benzyladenine (BA) supplemented in half strength MS (½-MS) medium and also their effect on in vitro rooting of the regenerated shoots. Multiple shoots were induced from cotyledonary nodes at varied frequencies depending on the type and concentration of cytokinin used in the medium. TDZ was found to induce more number of shoots per explant than BA, with a maximum of 7 shoots at an optimum concentration of 0.23 µM. Further increase in TDZ concentration resulted in reduced shoot length and fasciation of the shoots. Liquid pulse treatment of the explants with TDZ did not improve the shoot production further but improved the subsequent rooting of the shoots that regenerated. Regenerated shoots successfully rooted on ½-MS medium supplemented with 0.54 µM α-naphthaleneacetic acid (NAA). Rooted shoots of Leucaena were transferred to coco-peat and hardened plantlets showed ≥ 90 % establishment in the green house.


Plant Cell Tissue and Organ Culture | 2015

Overexpression of squalene synthase in Withania somnifera leads to enhanced withanolide biosynthesis

Neha Patel; Parth Patel; Shuchishweta V. Kendurkar; Hirekodathakallu V. Thulasiram; Bashir M. Khan

Genetic engineering of secondary metabolic pathways is an emerging area of research for production and improvement of natural products in plant biotechnology. Here, we describe a systematic approach to manipulate a key regulatory step of isoprenoid biosynthetic pathway in Withania somnifera to study its effect on withanolide production. We generated T0W. somnifera plants overexpressing squalene synthase (WsSQS) by Agrobacterium tumefaciens mediated transformation, which were analyzed by Gus biochemical assay and PCR of hygromycin phosphotransferase (hptII) and WsSQS. qRT-PCR analyses of various transformed tissues indicated 2–5 fold increase in WsSQS transcripts in both T0 and T1 generations. The tissue specific protein expression studies revealed 2–3 fold increase in WsSQS, which was further confirmed by enzyme activity. These observations were corroborated with the 1.5–2 fold increase in total withanolide content of the transformed tissues. However, in leaf tissue, the levels of Withaferin A and Withanolide A increased significantly up to 4–4.5 fold. These findings demonstrate genetic engineering of isoprenoid pathway in W. somnifera resulting in enhanced production of withanolides, and also provide insights into such metabolic pathways for their manipulation to improve the pharmacological content of different medicinally important plants.


Bioinformation | 2012

Structural characterization of a flavonoid glycosyltransferase from Withania somnifera.

Santosh Kumar Ramachandra Jadhav; Krunal Patel; Bhushan B. Dholakia; Bashir M. Khan

Medicinal plants are extensively utilized in traditional and herbal medicines, both in India and around the world due to the presence of diverse low molecular weight natural products such as flavonoids, alkaloids, terpenoids and sterols. Flavonoids which have health benefits for humans are the large class of phenylpropanoid-derived secondary metabolites and are mostly glycosylated by UDP-glycosyltransferases (UGTs). Although large numbers of different UGTs are known from higher plants, very few protein structures have been reported till now. In the present study, the three-dimensional model of flavonoid specific glycosyltransferases (WsFGT) from Withania somnifera was constructed based on the crystal structure of plant UGTs. The resulted model was assessed by various tools and the final refined model revealed GT-B type fold. Further, to understand the sugar donors and acceptors interactions with the active site of WsFGT, docking studies were performed. The amino acids from conserved PSPG box were interacted with sugar donor while His18, Asp110, Trp352 and Asn353 were important for catalytic function. This structural and docking information will be useful to understand the glycosylation mechanism of flavonoid glucosides. Abbreviations DOPE - Discrete Optimized Potential Energy, PDB - Protein Data Bank, PSPG - Plant Secondary Product Glycosyltransferase, RMSD - Root Mean Squared Deviation, UDP - Uridine diphosphate, UGT - UDP-glycosyltransferases.


International Journal of Biological Macromolecules | 2013

Biochemical characterization of recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala

Prashant Sonawane; Rishi K. Vishwakarma; Bashir M. Khan

Recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) protein from Leucaena leucocephala was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Optimum pH for forward and reverse reaction was found to be 6.5 and 7.8 respectively. The enzyme was most stable around pH 6.5 at 25°C for 90 min. The enzyme showed Kcat/Km for feruloyl, caffeoyl, sinapoyl, coumaroyl CoA, coniferaldehyde and sinapaldehyde as 4.6, 2.4, 2.3, 1.7, 1.9 and 1.2 (×10(6) M(-1) s(-1)), respectively, indicating affinity of enzyme for feruloyl CoA over other substrates and preference of reduction reaction over oxidation. Activation energy, Ea for various substrates was found to be in the range of 20-50 kJ/mol. Involvement of probable carboxylate ion, histidine, lysine or tyrosine at the active site of enzyme was predicted by pH activity profile. SAXS studies of protein showed radius 3.04 nm and volume 49.25 nm(3) with oblate ellipsoid shape. Finally, metal ion inhibition studies revealed that Ll-CCRH1 is a metal independent enzyme.


International Journal of Biological Macromolecules | 2013

Probing the active site of cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala.

Prashant Sonawane; Krunal Patel; Rishi K. Vishwakarma; Sameer Srivastava; Somesh Singh; Sushama M. Gaikwad; Bashir M. Khan

Lack of three dimensional crystal structure of cinnamoyl CoA reductase (CCR) limits its detailed active site characterization studies. Putative active site residues involved in the substrate/NADPH binding and catalysis for Leucaena leucocephala CCR (Ll-CCRH1; GenBank: DQ986907) were identified by amino acid sequence alignment and homology modeling. Putative active site residues and proximal H215 were subjected for site directed mutagenesis, and mutated enzymes were expressed, purified and assayed to confirm their functional roles. Mutagenesis of S136, Y170 and K174 showed complete loss of activity, indicating their pivotal roles in catalysis. Mutant S212G exhibited the catalytic efficiencies less than 10% of wild type, showing its indirect involvement in substrate binding or catalysis. R51G, D77G, F30V and I31N double mutants showed significant changes in Km values, specifying their roles in substrate binding. Finally, chemical modification and substrate protection studies corroborated the presence Ser, Tyr, Lys, Arg and carboxylate group at the active site of Ll-CCRH1.


International Journal of Biological Macromolecules | 2015

Bacopa monniera recombinant mevalonate diphosphate decarboxylase: Biochemical characterization

Shakeel Abbassi; Rishi K. Vishwakarma; Parth Patel; Uma Kumari; Bashir M. Khan

Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) is an important enzyme in the mevalonic acid pathway catalyzing the Mg(2+)-ATP dependant decarboxylation of mevalonate 5-diphosphate (MVAPP) to isopentenyl diphosphate (IPP). Bacopa monniera recombinant MDD (BmMDD) protein was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Km and Vmax for MVAPP were 144 μM and 52 U mg(-1) respectively. The values of turnover (kcat) and kcat/Km for mevalonate 5-diphosphate were determined to be 40s(-1) and 2.77×10(5) M(-1) s(-1) and kcat and kcat/Km values for ATP were found to be 30 s(-1) and 2.20×10(4) M(-1) s(-1), respectively. pH activity profile indicated the involvement of carboxylate ion, lysine and arginine for the activity of enzyme. The apparent activation energy for the BmMDD catalyzed reaction was 12.7 kJ mol(-1). Optimum pH and temperature for the forward reaction was found to be 8.0 and 45 °C. The enzyme was most stable at pH 7 at 20 °C with the deactivation rate constant (Kd(*)) of 1.69×10(-4) and half life (t1/2) of 68 h. The cation studies suggested that BmMDD is a cation dependant enzyme and optimum activity was achieved in the presence of Mg(2+).


Bioinformation | 2013

in Silico mutagenesis and docking studies of active site residues suggest altered substrate specificity and possible physiological role of Cinnamoyl CoA Reductase 1 (Ll-CCRH1).

Prashant Sonawane; Krunal Patel; Rishi K. Vishwakarma; Somesh Singh; Bashir M. Khan

Cinnamoyl CoA reductase (CCR) carries out the first committed step in monolignol biosynthesis and acts as a first regulatory point in lignin formation. CCR shows multiple substrate specificity towards various cinnamoyl CoA esters. Here, in Silico mutagenesis studies of active site residues of Ll-CCRH1 were carried out. Homology modeling based modeled 3D structure of Ll-CCRH1 was used as template for in Silico mutant preparations. Docking simulations of Ll-CCRH1 mutants with CoA esters by AutoDock Vina tools showed altered substrate specificity as compared to wild type. The study evidences that conformational changes, and change in geometry or architecture of active site pocket occurred following mutations. The altered substrate specificity for active site mutants suggests the possible physiological role of CCR either in lignin formation or in defense system in plants. Abbreviations Ll-CCRH1 - Leucaena leucocephala cinnamoyl CoA reductase 1, OPLS - Optimized Potentials for Liquid Simulations, RMSD - Root Mean Square Deviation.


Bioinformation | 2012

Molecular characterization of farnesyl pyrophosphate synthase from Bacopa monniera by comparative modeling and docking studies

Rishi K. Vishwakarma; Krunal Patel; Prashant Sonawane; Somesh Singh; Ruby; Uma Kumari; Dinesh Chandra Agrawal; Bashir M. Khan

Farnesyl pyrophosphate synthase (FPS; EC 2.5.1.10) is a key enzyme in isoprenoid biosynthetic pathway and provides precursors for the biosynthesis of various pharmaceutically important metabolites. It catalyzes head to tail condensation of two isopentenyl pyrophosphate molecules with dimethylallyl pyrophosphate to form C15 compound farnesyl pyrophosphate. Recent studies have confirmed FPS as a molecular target of bisphosphonates for drug development against bone diseases as well as pathogens. Although large numbers of FPSs from different sources are known, very few protein structures have been reported till date. In the present study, FPS gene from medicinal plant Bacopa monniera (BmFPS) was characterized by comparative modeling and docking. Multiple sequence alignment showed two highly conserved aspartate rich motifs FARM and SARM (DDXXD). The 3-D model of BmFPS was generated based on structurally resolved FPS crystal information of Gallus gallus. The generated models were validated by various bioinformatics tools and the final model contained only α-helices and coils. Further, docking studies of modeled BmFPS with substrates and inhibitors were performed to understand the protein ligand interactions. The two Asp residues from FARM (Asp100 and Asp104) as well as Asp171, Lys197 and Lys262 were found to be important for catalytic activity. Interaction of nitrogen containing bisphosphonates (risedronate, alendronate, zoledronate and pamidronate) with modeled BmFPS showed competitive inhibition; where, apart from Asp (100, 104 and 171), Thr175 played an important role. The results presented here could be useful for designing of mutants for isoprenoid biosynthetic pathway engineering well as more effective drugs against osteoporosis and human pathogens. Abbreviations IPP - Isopentenyl Pyrophosphate, DMAPP - Dimethylallyl Pyrophosphate, GPP - Geranyl Pyrophosphate, FPP - FPPFarnesyl Pyrophosphate, DOPE - Discrete Optimized Protein Energy, BmFPS - Bacopa monniera Farnesyl Pyrophosphate Synthase, RMSD - Root Mean square Deviation, OPLS-AA - Optimized Potentials for Liquid Simulations- All Atom, FARM - First Aspartate Rich Motif, SARM - Second Aspartate Rich Motif.


International Journal of Biological Macromolecules | 2015

Biochemical characterization of recombinant mevalonate kinase from Bacopa monniera.

Uma Kumari; Rishi K. Vishwakarma; Prashant Sonawane; Shakeel Abbassi; Bashir M. Khan

Mevalonate kinase (MK; ATP: mevalonate 5-phosphotransferase; EC 2.7.1.36) plays a key role in isoprenoid biosynthetic pathway in plants. MK catalyzes the phosphorylation of mevalonate to form mevalonate-5-phosphate. The recombinant BmMK was cloned and over-expressed in E. coli BL21 (DE3), and purified to homogeneity by affinity chromatography followed by gel filtration. Optimum pH and temperature for forward reaction was found to be 7.0 and 30 °C, respectively. The enzyme was most stable at pH 8 at 25 °C with deactivation rate constant (Kd*) 1.398 × 10(-4) and half life (t1/2) 49 h. pH activity profile of BmMK indicates the involvement of carboxylate ion, histidine, lysine, arginine or aspartic acid at the active site of enzyme. Activity of recombinant BmMK was confirmed by phosphorylation of RS-mevalonate in the presence of Mg(2+), having Km and Vmax 331.9 μM and 719.1 pKat μg(-1), respectively. The values of kcat and kcat/Km for RS-mevalonate were determined to be 143.82 s(-1) and 0.43332 M(-1) s(-1) and kcat and kcat/Km values for ATP were found 150.9 s(-1) and 1.023 M(-1) s(-1). The metal ion studies suggested that BmMK is a metal dependent enzyme and highly active in the presence of MgCl2.

Collaboration


Dive into the Bashir M. Khan's collaboration.

Top Co-Authors

Avatar

Rishi K. Vishwakarma

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Prashant Sonawane

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Somesh Singh

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Krunal Patel

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Uma Kumari

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Ruby

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Sameer Srivastava

Motilal Nehru National Institute of Technology Allahabad

View shared research outputs
Top Co-Authors

Avatar

Parth Patel

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

R. J. Santosh Kumar

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Shakeel Abbassi

Council of Scientific and Industrial Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge