Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Basil R. Marple is active.

Publication


Featured researches published by Basil R. Marple.


Journal of Thermal Spray Technology | 2005

Elastic modulus measurements via laser-ultrasonic and knoop indentation techniques in thermally sprayed coatings

Rogerio S. Lima; Silvio E. Kruger; G. Lamouche; Basil R. Marple

Nondestructive techniques for evaluating and characterizing coatings were extensively demanded by the thermal spray community; nonetheless, few results have been produced in practice due to difficulties in analyzing the complex structure of thermal spray coatings. Of particular interest is knowledge of the elastic modulus values and Poisson’s ratios, which are very important when seeking to understand and/or model the mechanical behavior or to develop life prediction models of thermal spray coatings used in various applications (e.g., wear, fatigue, and high temperatures). In the current study, two techniques, laser-ultrasonics and Knoop indentation, were used to determine the elastic modulus of thermal spray coatings. Laser-ultrasonics is a noncontact and nondestructive evaluation method that uses lasers to generate and detect ultrasound. Ultrasonic velocities in a material are directly related to its elastic modulus value. The Knoop indentation technique, which has been widely used as a method for determining elastic modulus values, was used to compare and validate the measurements of the laser-ultrasonic technique. The determination of elastic modulus values via the Knoop indentation technique is based on the measurement of elastic recovery of the dimensions of the Knoop indentation impression. The approach used in the current study was to focus on evaluating the elastic modulus of very uniform, dense, and near-isotropic titania and WC-Co thermal spray coatings using these two techniques. Four different coatings were evaluated: two titania coatings produced by air plasma spray (APS) and high-velocity oxyfuel (HVOF) and two types of WC-Co coatings, conventional and multimodal (nanostructured and microsized particles), deposited by HVOF.


Journal of Materials Processing Technology | 2001

Thermal spraying of nanostructured cermet coatings

Basil R. Marple; Joël Voyer; J. F. Bisson; C. Moreau

Abstract A nanostructured WC–12Co powder was sprayed using three different HVOF gun-fuel combinations in which the fuels were kerosene, hydrogen and propylene. Using particle diagnostics, significant differences were observed in the particle temperatures and velocities generated using these various combinations. Important differences were identified when comparing various aspects of coatings produced using either hydrogen or propylene as the fuel. When using hydrogen, deposition efficiencies were higher, the coatings were harder and the extent of carbide degradation was less than when propylene was employed as the fuel.


Journal of Thermal Spray Technology | 2005

Process temperature/velocity-hardness-wear relationships for high-velocity oxyfuel sprayed nanostructured and conventional cermet coatings

Basil R. Marple; Rogerio S. Lima

High-velocity oxyfuel (HVOF) spraying of WC-12Co was performed using a feedstock in which the WC phase was either principally in the micron size range (conventional) or was engineered to contain a significant fraction of nanosized grains (multimodal). Three different HVOF systems and a wide range of spray parameter settings were used to study the effect of in-flight particle characteristics on coating properties. A process window with respect to particle temperature was identified for producing coatings with the highest resistance to dry abrasion. Although the use of a feedstock containing a nanosized WC phase produced harder coatings, there was little difference in the abrasion resistance of the best-performing conventional and multimodal coatings. However, there is a potential benefit in using the multimodal feedstock due to higher deposition efficiencies and a larger processing window.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2006

Hot corrosion of lanthanum zirconate and partially stabilized zirconia thermal barrier coatings

Basil R. Marple; Joël Voyer; Michel Thibodeau; Douglas R. Nagy; Robert Vassen

The hot corrosion resistance of lanthanum zirconate and 8 wt. % yttria-stabilized zirconia coatings produced by thermal spraying for use as thermal barriers on industrial gas turbines or in aerospace applications was evaluated. The two ceramic oxide coatings were exposed for various periods of time at temperatures up to 1000°C to vanadium- and sulfur-containing compounds, species often produced during the combustion of typical fuels used in these applications. Changes in the coatings were studied using a scanning electron microscope to observe the microstructure and x-ray diffraction techniques to analyze the phase composition. The results showed different behaviors for the two materials: the zirconia-based coating being rapidly degraded by the vanadium compounds and resistant to attack by the sulfur materials while the lanthanum zirconate was less damaged by exposure to vanadia but severely attacked in the presence of sulfur-containing species.


Pure and Applied Chemistry | 2005

Diagnostics for advanced materials processing by plasma spraying

C. Moreau; J. F. Bisson; Rogerio S. Lima; Basil R. Marple

Advanced coatings deposited by plasma spraying are used in a large variety of industrial applications. The sprayed coatings are employed typically in industry to protect parts from severe operating conditions or to produce surfaces with specific functions. Applications are found in many industrial sectors such as aerospace, automobile, energy generation, and biomedical implants. Coatings are built by the successive deposition of molten or partially molten particles that flatten and solidify upon contact on the substrate, forming lamellae. The coating properties are intimately linked to the properties of these lamellae, which in turn depend on in-flight particle properties as well as substrate temperature during spraying. Consequently, the development of diagnostic tools for monitoring and controlling these spray parameters will help provide the necessary information to study the coating formation process, optimize the coating properties, and, eventually, control the spray process in production. In this paper, a review of some recent developments of optical diagnostic techniques applied to monitor plasma-sprayed particles is presented. In the first part of the paper, two different sensing techniques for in-flight particle measurement are described. First, time-resolved diagnostics on individual particles is described. This technique is used to study the instabilities of the particle characteristics associated with the plasma fluctuations. Secondly, a technique adapted for use in an industrial production environment for measuring the particle jet characteristics as an ensemble is presented. In the second part of the paper, the use of an optical system to study the influence of the substrate temperature on the flattening and solidification of sprayed particles impacting on a flat substrate is described. The last part of this paper describes the optimization of nanostructured coatings based on a tight control of the temperature and velocity of the plasma-sprayed particles.


Journal of Thermal Spray Technology | 2003

High Weibull modulus HVOF titania coatings

Rogerio S. Lima; Basil R. Marple

The mechanical behavior of high-velocity oxyfuel (HVOF) sprayed titania (TiO2) coatings was evaluated using Vickers hardness measurements on the cross section and top surface. The distribution of hardness values for the cross-section and top surface under 25, 50, 100, 300, 500, and 1000 g loads was analyzed via Weibull statistics. The coating microstructure was evaluated using scanning electron microscopy (SEM). It was observed that the microstructural features were similar in the top surface and cross-section, different from the lamellar structure commonly found in thermal spray coatings. X-ray diffraction (XRD) analysis identified rutile as the major coating phase. The in-flight sprayed particle parameters such as temperature and velocity were determined using a commercial diagnostic system based on pyrometry and time-of-flight measurements. The uniformity of the microstructure resulted in a near isotropic behavior of the mechanical properties, such as hardness, in the coating cross-section and top surface. High Weibull modulus values were observed when compared with results of other thermal spray coatings available in the literature. These initial results should contribute to a more general understanding of the conditions necessary to achieve coatings with high uniformity and assist in the engineering of coating microstructures for specific applications.


Journal of Thermal Spray Technology | 2005

Superior performance of high-velocity oxyfuel-sprayed nanostructured TiO2 in comparison to air plasma-sprayed conventional Al2O3-13TiO2

Rogerio S. Lima; Basil R. Marple

Air plasma-sprayed conventional alumina-titania (Al2O3-13wt.%TiO2) coatings have been used for many years in the thermal spray industry for antiwear applications, mainly in the paper, printing, and textile industries. This work proposes an alternative to the traditional air plasma spraying of conventional aluminatitania by high-velocity oxyfuel (HVOF) spraying of nanostructured titania (TiO2). The microstructure, porosity, hardness (HV 300 g), crack propagation resistance, abrasion behavior (ASTM G65), and wear scar characteristics of these two types of coatings were analyzed and compared. The HVOF-sprayed nanostructured titania coating is nearly pore-free and exhibits higher wear resistance when compared with the air plasma-sprayed conventional alumina-titania coating. The nanozones in the nanostructured coating act as crack arresters, enhancing its toughness. By comparing the wear scar of both coatings (via SEM, stereoscope microscopy, and roughness measurements), it is observed that the wear scar of the HVOF-sprayed nanostructured titania is very smooth, indicating plastic deformation characteristics, whereas the wear scar of the air plasma-sprayed alumina-titania coating is very rough and fractured. This is considered to be an indication of a superior machinability of the nanostructured coating.


Journal of Biomedical Materials Research Part A | 2011

Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation.

Sashka Dimitrievska; Martin N. Bureau; John Antoniou; Fackson Mwale; Alain Petit; Rogerio S. Lima; Basil R. Marple

In addition to mechanical and chemical stability, the third design goal of the ideal bone-implant coating is the ability to support osteogenic differentiation of mesenchymal stem cells (MSCs). Plasma-sprayed TiO(2)-based bone-implant coatings exhibit excellent long-term mechanical properties, but their applications in bone implants are limited by their bioinertness. We have successfully produced a TiO(2) nanostructured (grain size <50 nm) based coating charged with 10% wt hydroxyapatite (TiO(2)-HA) sprayed by high-velocity oxy-fuel. On Ti64 substrates, the novel TiO(2)-HA coating bond 153× stronger and has a cohesive strength 4× higher than HA coatings. The HA micro- and nano-sized particles covering the TiO(2)-HA coating surface are chemically bound to the TiO(2) coating matrix, producing chemically stable coatings under high mechanical solicitations. In this study, we elucidated the TiO(2)-HA nanocomposite coating surface chemistry, and in vitro osteoinductive potential by culturing human MSCs (hMSCs) in basal and in osteogenic medium (hMSC-ob). We assessed the following hMSCs and hMSC-ob parameters over a 3-week period: (i) proliferation; (ii) cytoskeleton organization and cell-substrate adhesion; (iii) coating-cellular interaction morphology and growth; and (iv) cellular mineralization. The TiO(2) -HA nanocomposite coatings demonstrated 3× higher hydrophilicity than HA coatings, a TiO(2)-nanostructured surface in addition to the chemically bound HA micron- and nano-sized rod to the surface. hMSCs and hMSC-ob demonstrated increased proliferation and osteoblastic differentiation on the nanostructured TiO(2)-HA coatings, suggesting the TiO(2)-HA coatings nanostructure surface properties induce osteogenic differentiation of hMSC and support hMSC-ob osteogenic potential better than our current golden standard HA coating.


Journal of Thermal Spray Technology | 2003

Optimized HVOF titania coatings

Rogerio S. Lima; Basil R. Marple

A series of spray parameters was tested for a titania (TiO2) feedstock, and the in-flight particle temperature was measured for each setting combination. The parameter set that resulted in the highest particle temperature was selected for producing coatings for further study and analysis. With this parameter set, the majority of the sprayed particles had temperatures (at least superficially) above that of the melting point of titania. The hardness (H), elastic modulus (E), and elasticity index (H/E ratio) on the cross section and top surface of these HVOF-sprayed titania coatings were evaluated using the Knoop technique and Vickers hardness measurements. The distribution of elastic modulus and hardness values was analyzed via Weibull statistics. The coating microstructure and phase composition were evaluated using scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis, respectively. The porosity level was determined via image analysis. It was observed that the coatings were uniform and very dense, consisting of rutile as the major phase. The optimized spray conditions allowed the production of thick coatings (∼740 µm), which were shown to be in a state of residual compressive stress using Almen strip measurements.


Materials at High Temperatures | 2000

Corrosion of thermal barrier coatings by vanadium and sulfur compounds

Basil R. Marple; Joël Voyer; C. Moreau; Douglas R. Nagy

Abstract Hot corrosion studies of two plasma-sprayed coatings, yttria-stabilized zirconia and calcium silicate, were undertaken in order to compare the performance of these materials for use as thermal barrier coatings in high-temperature combustion environments. The coatings were tested in contact with vanadium pentoxide at 1,000°C and, also, under conditions in which they were exposed to sulfur-containing compounds at 900°C or 1,000°C. The samples were subsequently characterized by scanning electron microscopy and X-ray diffraction analysis to identify the effects of these tests on the microstructure and composition. The results indicate that reactions with V2O5 lead to a disruptive phase transformation in zirconia that rapidly degrades the coating. For calcium silicate, the reactions with V2O5 appear to be more limited and less disruptive so that the coating is much more slowly degraded by the vanadium compounds. Exposure to SOx and sulfate salts at high temperature caused rapid degradation of the calcium silicate coatings through a reaction involving the formation of CaSO4. Under similar conditions, the yttria-stabilized zirconia coatings experienced much less attack.

Collaboration


Dive into the Basil R. Marple's collaboration.

Top Co-Authors

Avatar

Rogerio S. Lima

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joël Voyer

National Research Council

View shared research outputs
Top Co-Authors

Avatar

W.R. Chen

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P.C. Patnaik

National Research Council

View shared research outputs
Top Co-Authors

Avatar

X. Wu

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Hua Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Khiam Aik Khor

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Jean Boulanger

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge