Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Basil S. Pawlyk is active.

Publication


Featured researches published by Basil S. Pawlyk.


Nature Genetics | 2004

Elastic fiber homeostasis requires lysyl oxidase-like 1 protein.

Xiaoqing Liu; Yun Zhao; Jiangang Gao; Basil S. Pawlyk; Barry Starcher; Jeffrey A. Spencer; Hiromi Yanagisawa; Jian Zuo; Tiansen Li

Elastic fibers are components of the extracellular matrix and confer resilience. Once laid down, they are thought to remain stable, except in the uterine tract where cycles of active remodeling occur. Loss of elastic fibers underlies connective tissue aging and important diseases including emphysema. Failure to maintain elastic fibers is explained by a theory of antielastase-elastase imbalance, but little is known about the role of renewal. Here we show that mice lacking the protein lysyl oxidase–like 1 (LOXL1) do not deposit normal elastic fibers in the uterine tract post partum and develop pelvic organ prolapse, enlarged airspaces of the lung, loose skin and vascular abnormalities with concomitant tropoelastin accumulation. Distinct from the prototypic lysyl oxidase (LOX), LOXL1 localizes specifically to sites of elastogenesis and interacts with fibulin-5. Thus elastin polymer deposition is a crucial aspect of elastic fiber maintenance and is dependent on LOXL1, which serves both as a cross-linking enzyme and an element of the scaffold to ensure spatially defined deposition of elastin.


Neuron | 1992

Transgenic mice with a rhodopsin mutation (Pro23His): A mouse model of autosomal dominant retinitis pigmentosa

Jane E. Olsson; Jon W. Gordon; Basil S. Pawlyk; Dorothy Roof; Annmarie Hayes; Robert S. Molday; Shizuo Mukai; Glenn S. Cowley; Eliot L. Berson; Thaddeus P. Dryja

We inserted into the germline of mice either a mutant or wild-type allele from a patient with retinitis pigmentosa and a missense mutation (P23H) in the rhodopsin gene. All three lines of transgenic mice with the mutant allele developed photoreceptor degeneration; the one with the least severe retinal photoreceptor degeneration had the lowest transgene expression, which was one-sixth the level of endogenous murine rod opsin. Of two lines of mice with the wild-type allele, one expressed approximately equal amounts of transgenic and murine opsin and maintained normal retinal function and structure. The other expressed approximately 5 times more transgenic than murine opsin and developed a retinal degeneration similar to that found in mice carrying a mutant allele, presumably due to the overexpression of this protein. Our findings help to establish the pathogenicity of mutant human P23H rod opsin and suggest that overexpression of wild-type human rod opsin leads to a remarkably similar photoreceptor degeneration.


Cell | 2007

Intrinsic Circadian Clock of the Mammalian Retina: Importance for Retinal Processing of Visual Information

Kai-Florian Storch; Carlos Paz; James Signorovitch; Basil S. Pawlyk; Tiansen Li; Charles J. Weitz

Circadian clocks are widely distributed in mammalian tissues, but little is known about the physiological functions of clocks outside the suprachiasmatic nucleus of the brain. The retina has an intrinsic circadian clock, but its importance for vision is unknown. Here we show that mice lacking Bmal1, a gene required for clock function, had abnormal retinal transcriptional responses to light and defective inner retinal electrical responses to light, but normal photoreceptor responses to light and retinas that appeared structurally normal by light and electron microscopy. We generated mice with a retina-specific genetic deletion of Bmal1, and they had defects of retinal visual physiology essentially identical to those of mice lacking Bmal1 in all tissues and lacked a circadian rhythm of inner retinal electrical responses to light. Our findings indicate that the intrinsic circadian clock of the retina regulates retinal visual processing in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: Subserving RPGR function and participating in disk morphogenesis

Yun Zhao; Dong-Hyun Hong; Basil S. Pawlyk; Guohua Yue; Michael Adamian; Marcin Grynberg; Adam Godzik; Tiansen Li

Retinitis pigmentosa is a photoreceptor degenerative disease leading to blindness in adulthood. Leber congenital amaurosis (LCA) describes a more severe condition with visual deficit in early childhood. Defects in the retinitis pigmentosa GTPase regulator (RPGR) and an RPGR-interacting protein (RPGRIP) are known causes of retinitis pigmentosa and LCA, respectively. Both proteins localize in the photoreceptor connecting cilium (CC), a thin bridge linking the cell body and the light-sensing outer segment. We show that RPGR is absent in the CC of photoreceptors lacking RPGRIP, but not vice versa. Mice lacking RPGRIP elaborate grossly oversized outer segment disks resembling a cytochalasin D-induced defect and have a more severe disease than mice lacking RPGR. Mice lacking both proteins are phenotypically indistinguishable from mice lacking RPGRIP alone. In vitro, RPGRIP forms homodimer and elongated filaments via interactions involving its coiled-coil and C-terminal domains. We conclude that RPGRIP is a stable polymer in the CC where it tethers RPGR and that RPGR depends on RPGRIP for subcellular localization and normal function. Our data suggest that RPGRIP is also required for disk morphogenesis, putatively by regulating actin cytoskeleton dynamics. The latter hypothesis may be consistent with a distant homology between the C-terminal domain of RPGRIP and an actin-fragmin kinase, predicted by fold recognition algorithms. A defect in RPGRIP encompasses loss of both functions, hence the more severe clinical manifestation as LCA.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells

Xiaoqing Liu; Oleg V. Bulgakov; Keith N. Darrow; Basil S. Pawlyk; Michael Adamian; M. Charles Liberman; Tiansen Li

Usher syndrome type IIA (USH2A), characterized by progressive photoreceptor degeneration and congenital moderate hearing loss, is the most common subtype of Usher syndrome. In this article, we show that the USH2A protein, also known as usherin, is an exceptionally large (≈600-kDa) matrix protein expressed specifically in retinal photoreceptors and developing cochlear hair cells. In mammalian photoreceptors, usherin is localized to a spatially restricted membrane microdomain at the apical inner segment recess that wraps around the connecting cilia, corresponding to the periciliary ridge complex described for amphibian photoreceptors. In sensory hair cells of the cochlea, it is associated transiently with the hair bundles during postnatal development. Targeted disruption of the Ush2a gene in mice leads to progressive photoreceptor degeneration and a moderate but nonprogressive hearing impairment, mimicking the visual and hearing deficits in USH2A patients. These data suggest that usherin is required for the long-term maintenance of retinal photoreceptors and for the development of cochlear hair cells. We propose a model in which usherin in photoreceptors is tethered via its C terminus to the plasma membrane and its large extracellular domain projecting into the periciliary matrix, where they may interact with the connecting cilium to fulfill important structural or signaling roles.


Gene Therapy | 2010

Gene Therapy with a Promoter Targeting Both Rods and Cones Rescues Retinal Degeneration Caused by AIPL1 Mutations

Xun Sun; Basil S. Pawlyk; Xiaoyun Xu; Xiaoqing Liu; Oleg V. Bulgakov; Michael Adamian; Michael A. Sandberg; Shahrokh C. Khani; Mei-Hong Tan; Alexander J. Smith; Robin R. Ali; Tiansen Li

Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is required for the biosynthesis of photoreceptor phosphodiesterase (PDE). Gene defects in AIPL1 cause a heterogeneous set of conditions ranging from Lebers congenital amaurosis (LCA), the severest form of early-onset retinal degeneration, to milder forms such as retinitis pigmentosa (RP) and cone-rod dystrophy. In mice, null and hypomorphic alleles cause retinal degeneration similar to human LCA and RP, respectively. Thus these mouse models represent two ends of the disease spectrum associated with AIPL1 gene defects in humans. We evaluated whether adeno-associated virus (AAV)-mediated gene replacement therapy in these models could restore PDE biosynthesis in rods and cones and thereby improve photoreceptor survival. We validated the efficacy of human AIPL1 (isoform 1) replacement gene controlled by a promoter derived from the human rhodopsin kinase (RK) gene, which is active in both rods and cones. We found substantial and long-term rescue of the disease phenotype as a result of transgene expression. This is the first gene therapy study in which both rods and cones were targeted successfully with a single photoreceptor-specific promoter. We propose that the vector and construct design used in this study could serve as a prototype for a human clinical trial.


Molecular and Cellular Biology | 2005

The ciliary rootlet maintains long-term stability of sensory cilia

Jun Yang; Jiangang Gao; Michael Adamian; Xiao Hong Wen; Basil S. Pawlyk; Luo Zhang; Michael J. Sanderson; Jian Zuo; Clint L. Makino; Tiansen Li

ABSTRACT The striated ciliary rootlet is a prominent cytoskeleton originating from basal bodies of ciliated cells. Although a familiar structure in cell biology, its function has remained unresolved. In this study, we carried out targeted disruption in mice of the gene for rootletin, a component of the rootlet. In the mutant, ciliated cells are devoid of rootlets. Phototransduction and ciliary beating in sensory and motile cilia initially exhibit no apparent functional deficits. However, photoreceptors degenerate over time, and mutant lungs appear prone to pathological changes consistent with insufficient mucociliary clearance. Further analyses revealed a striking fragility at the ciliary base in photoreceptors lacking rootlets. In vitro assays suggest that the rootlet is among the least dynamic of all cytoskeletons and interacts with actin filaments. Thus, a primary function of the rootlet is to provide structural support for the cilium. Inasmuch as photoreceptors elaborate an exceptionally enlarged sensory cilium, they are especially dependent on the rootlet for structural integrity and long-term survival.


The EMBO Journal | 2004

Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function

Alexander G. Marneros; Douglas R. Keene; Uwe Hansen; Naomi Fukai; Karen S. Moulton; Patrice Goletz; Gennadiy Moiseyev; Basil S. Pawlyk; Willi Halfter; Sucai Dong; Masao Shibata; Tiansen Li; Rosalie K. Crouch; Peter Bruckner; Björn Olsen

Age‐related macular degeneration (ARMD) with abnormal deposit formation under the retinal pigment epithelium (RPE) is the major cause of blindness in the Western world. basal laminar deposits are found in early ARMD and are composed of excess basement membrane material produced by the RPE. Here, we demonstrate that mice lacking the basement membrane component collagen XVIII/endostatin have massive accumulation of sub‐RPE deposits with striking similarities to basal laminar deposits, abnormal RPE, and age‐dependent loss of vision. The progressive attenuation of visual function results from decreased retinal rhodopsin content as a consequence of abnormal vitamin A metabolism in the RPE. In addition, aged mutant mice show photoreceptor abnormalities and increased expression of glial fibrillary acidic protein in the neural retina. Our data demonstrate that collagen XVIII/endostatin is essential for RPE function, and suggest an important role of this collagen in Bruchs membrane. Consistent with such a role, the ultrastructural organization of collagen XVIII/endostatin in basement membranes, including Bruchs membrane, shows that it is part of basement membrane molecular networks.


Human Molecular Genetics | 2009

Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors

Mei Hong Tan; Alexander J. Smith; Basil S. Pawlyk; Xiaoyun Xu; Xiaoqing Liu; James W.B. Bainbridge; Mark Basche; Jenny McIntosh; Hoai Viet Tran; Amit C. Nathwani; Tiansen Li; Robin R. Ali

Defects in the photoreceptor-specific gene encoding aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) are clinically heterogeneous and present as Leber Congenital Amaurosis, the severest form of early-onset retinal dystrophy and milder forms of retinal dystrophies such as juvenile retinitis pigmentosa and dominant cone-rod dystrophy. [Perrault, I., Rozet, J.M., Gerber, S., Ghazi, I., Leowski, C., Ducroq, D., Souied, E., Dufier, J.L., Munnich, A. and Kaplan, J. (1999) Leber congenital amaurosis. Mol. Genet. Metab., 68, 200-208.] Although not yet fully elucidated, AIPL1 is likely to function as a specialized chaperone for rod phosphodiesterase (PDE). We evaluate whether AAV-mediated gene replacement therapy is able to improve photoreceptor function and survival in retinal degeneration associated with AIPL1 defects. We used two mouse models of AIPL1 deficiency simulating three different rates of photoreceptor degeneration. The Aipl1 hypomorphic (h/h) mouse has reduced Aipl1 levels and a relatively slow degeneration. Under light acceleration, the rate of degeneration in the Aipl1 h/h mouse is increased by 2-3-fold. The Aipl1-/- mouse has no functional Aipl1 and has a very rapid retinal degeneration. To treat the different rates of degeneration, two pseudotypes of recombinant adeno-associated virus (AAV) exhibiting different transduction kinetics are used for gene transfer. We demonstrate restoration of cellular function and preservation of photoreceptor cells and retinal function in Aipl1 h/h mice following gene replacement therapy using an AAV2/2 vector and in the light accelerated Aipl1 h/h model and Aipl1-/- mice using an AAV2/8 vector. We have thus established the potential of gene replacement therapy in varying rates of degeneration that reflect the clinical spectrum of disease. This is the first gene replacement study to report long-term rescue of a photoreceptor-specific defect and to demonstrate effective rescue of a rapid photoreceptor degeneration.


PLOS Genetics | 2010

Ablation of Whirlin Long Isoform Disrupts the USH2 Protein Complex and Causes Vision and Hearing Loss

Jun Yang; Xiaoqing Liu; Yun Zhao; Michael Adamian; Basil S. Pawlyk; Xun Sun; D. Randy McMillan; M. Charles Liberman; Tiansen Li

Mutations in whirlin cause either Usher syndrome type II (USH2), a deafness-blindness disorder, or nonsyndromic deafness. The molecular basis for the variable disease expression is unknown. We show here that only the whirlin long isoform, distinct from a short isoform by virtue of having two N-terminal PDZ domains, is expressed in the retina. Both long and short isoforms are expressed in the inner ear. The N-terminal PDZ domains of the long whirlin isoform mediates the formation of a multi-protein complex that includes usherin and VLGR1, both of which are also implicated in USH2. We localized this USH2 protein complex to the periciliary membrane complex (PMC) in mouse photoreceptors that appears analogous to the frog periciliary ridge complex. The latter is proposed to play a role in photoreceptor protein trafficking through the connecting cilium. Mice carrying a targeted disruption near the N-terminus of whirlin manifest retinal and inner ear defects, reproducing the clinical features of human USH2 disease. This is in contrast to mice with mutations affecting the C-terminal portion of whirlin in which the phenotype is restricted to the inner ear. In mice lacking any one of the USH2 proteins, the normal localization of all USH2 proteins is disrupted, and there is evidence of protein destabilization. Taken together, our findings provide new insights into the pathogenic mechanism of Usher syndrome. First, the three USH2 proteins exist as an obligatory functional complex in vivo, and loss of one USH2 protein is functionally close to loss of all three. Second, defects in the three USH2 proteins share a common pathogenic process, i.e., disruption of the PMC. Third, whirlin mutations that ablate the N-terminal PDZ domains lead to Usher syndrome, but non-syndromic hearing loss will result if they are spared.

Collaboration


Dive into the Basil S. Pawlyk's collaboration.

Top Co-Authors

Avatar

Tiansen Li

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael A. Sandberg

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Michael Adamian

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Eliot L. Berson

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Xiaoqing Liu

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Oleg V. Bulgakov

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Robin R. Ali

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Alexander J. Smith

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Dong-Hyun Hong

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge