Baskaran Anand
Indian Institute of Technology Guwahati
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Baskaran Anand.
Nucleic Acids Research | 2006
Baskaran Anand; Sunil Kumar Verma; Balaji Prakash
GTP hydrolysis by GTPases requires crucial residues embedded in a conserved G-domain as sequence motifs G1–G5. However, in some of the recently identified GTPases, the motif order is circularly permuted. All possible circular permutations were identified after artificially permuting the classical GTPases and subjecting them to profile Hidden Markov Model searches. This revealed G4–G5–G1–G2–G3 as the only possible circular permutation that can exist in nature. It was also possible to recognize a structural rationale for the absence of other permutations, which either destabilize the invariant GTPase fold or disrupt regions that provide critical residues for GTP binding and hydrolysis, such as Switch-I and Switch-II. The circular permutation relocates Switch-II to the C-terminus and leaves it unfastened, thus affecting GTP binding and hydrolysis. Stabilizing this region would require the presence of an additional domain following Switch-II. Circularly permuted GTPases (cpGTPases) conform to such a requirement and always possess an ‘anchoring’ C-terminal domain. There are four sub-families of cpGTPases, of which three possess an additional domain N-terminal to the G-domain. The biochemical function of these domains, based on available experimental reports and domain recognition analysis carried out here, are suggestive of RNA binding. The features that dictate RNA binding are unique to each subfamily. It is possible that RNA-binding modulates GTP binding or vice versa. In addition, phylogenetic analysis indicates a closer evolutionary relationship between cpGTPases and a set of universally conserved bacterial GTPases that bind the ribosome. It appears that cpGTPases are RNA-binding proteins possessing a means to relate GTP binding to RNA binding.
BMC Bioinformatics | 2004
Shashi B. Pandit; Rana Bhadra; V. S. Gowri; S. Balaji; Baskaran Anand; Narayanaswamy Srinivasan
BackgroundSUPFAM database is a compilation of superfamily relationships between protein domain families of either known or unknown 3-D structure. In SUPFAM, sequence families from Pfam and structural families from SCOP are associated, using profile matching, to result in sequence superfamilies of known structure. Subsequently all-against-all family profile matches are made to deduce a list of new potential superfamilies of yet unknown structure.DescriptionThe current version of SUPFAM (release 1.4) corresponds to significant enhancements and major developments compared to the earlier and basic version. In the present version we have used RPS-BLAST, which is robust and sensitive, for profile matching. The reliability of connections between protein families is ensured better than before by use of benchmarked criteria involving strict e-value cut-off and a minimal alignment length condition. An e-value based indication of reliability of connections is now presented in the database. Web access to a RPS-BLAST-based tool to associate a query sequence to one of the family profiles in SUPFAM is available with the current release. In terms of the scientific content the present release of SUPFAM is entirely reorganized with the use of 6190 Pfam families and 2317 structural families derived from SCOP. Due to a steep increase in the number of sequence and structural families used in SUPFAM the details of scientific content in the present release are almost entirely complementary to previous basic version. Of the 2286 families, we could relate 245 Pfam families with apparently no structural information to families of known 3-D structures, thus resulting in the identification of new families in the existing superfamilies. Using the profiles of 3904 Pfam families of yet unknown structure, an all-against-all comparison involving sequence-profile match resulted in clustering of 96 Pfam families into 39 new potential superfamilies.ConclusionSUPFAM presents many non-trivial superfamily relationships of sequence families involved in a variety of functions and hence the information content is of interest to a wide scientific community. The grouping of related proteins without a known structure in SUPFAM is useful in identifying priority targets for structural genomics initiatives and in the assignment of putative functions. Database URL: http://pauling.mbu.iisc.ernet.in/~supfam.
PLOS ONE | 2010
Baskaran Anand; Parag Surana; Balaji Prakash
Background YqeH, a circularly permuted GTPase (cpGTPase), which is conserved across bacteria and eukaryotes including humans is important for the maturation of small (30S) ribosomal subunit in Bacillus subtilis. Recently, we have shown that it binds 30S in a GTP/GDP dependent fashion. However, the catalytic machinery employed to hydrolyze GTP is not recognized for any of the cpGTPases, including YqeH. This is because they possess a hydrophobic substitution in place of a catalytic glutamine (present in Ras-like GTPases). Such GTPases were categorized as HAS-GTPases and were proposed to follow a catalytic mechanism, different from the Ras-like proteins. Methodology/Principal Findings MnmE, another HAS-GTPase, but not circularly permuted, utilizes a potassium ion and water mediated interactions to drive GTP hydrolysis. Though the G-domain of MnmE and YqeH share only ∼25% sequence identity, the conservation of characteristic sequence motifs between them prompted us to probe GTP hydrolysis machinery in YqeH, by employing homology modeling in conjunction with biochemical experiments. Here, we show that YqeH too, uses a potassium ion to drive GTP hydrolysis and stabilize the transition state. However, unlike MnmE, it does not dimerize in the transition state, suggesting alternative ways to stabilize switches I and II. Furthermore, we identify a potential catalytic residue in Asp-57, whose recognition, in the absence of structural information, was non-trivial due to the circular permutation in YqeH. Interestingly, when compared with MnmE, helix α2 that presents Asp-57 is relocated towards the N-terminus in YqeH. An analysis of the YqeH homology model, suggests that despite such relocation, Asp-57 may facilitate water mediated catalysis, similarly as the catalytic Glu-282 of MnmE. Indeed, an abolished catalysis by D57I mutant supports this inference. Conclusions/Significance An uncommon means to achieve GTP hydrolysis utilizing a K+ ion has so far been demonstrated only for MnmE. Here, we show that YqeH also utilizes a similar mechanism. While the catalytic machinery is similar in both, mechanistic differences may arise based on the way they are deployed. It appears that K+ driven mechanism emerges as an alternative theme to stabilize the transition state and hydrolyze GTP in a subset of GTPases, such as the HAS-GTPases.
Biochemical and Biophysical Research Communications | 2009
Baskaran Anand; Parag Surana; Sagar Bhogaraju; Sushmita Pahari; Balaji Prakash
YqeH, a circularly permuted GTPase, is conserved among bacteria and eukaryotes including humans. It was shown to be essential for the assembly of small ribosomal (30S) subunit in bacteria. However, whether YqeH interacts with 30S ribosome and how it may participate in 30S assembly are not known. Here, using co-sedimentation experiments, we report that YqeH co-associates with 30S ribosome in the GTP-bound form. In order to probe whether YqeH functions as RNA chaperone in 30S assembly, we assayed for strand dissociation and annealing activity. While YqeH does not exhibit these activities, it binds a non-specific single and double-stranded RNA, which unlike the 30S binding is independent of GTP/GDP binding and does not affect intrinsic GTP hydrolysis rates. Further, S5, a ribosomal protein which participates during the initial stages of 30S assembly, was found to promote GTP hydrolysis and RNA binding activities of YqeH.
Bioinformatics | 2005
Baskaran Anand; V. S. Gowri; Narayanaswamy Srinivasan
MOTIVATION Position specific scoring matrices (PSSMs) corresponding to aligned sequences of homologous proteins are commonly used in homology detection. A PSSM is generated on the basis of one of the homologues as a reference sequence, which is the query in the case of PSI-BLAST searches. The reference sequence is chosen arbitrarily while generating PSSMs for reverse BLAST searches. In this work we demonstrate that the use of multiple PSSMs corresponding to a given alignment and variable reference sequences is more effective than using traditional single PSSMs and hidden Markov models. RESULTS Searches for proteins with known 3-D structures have been made against three databases of protein family profiles corresponding to known structures: (1) One PSSM per family; (2) multiple PSSMs corresponding to an alignment and variable reference sequences for every family; and (3) hidden Markov models. A comparison of the performances of these three approaches suggests that the use of multiple PSSMs is most effective. CONTACT [email protected].
Nucleic Acids Research | 2017
K.N.R. Yoganand; R. Sivathanu; Siddharth Nimkar; Baskaran Anand
CRISPR–Cas system epitomizes prokaryote-specific quintessential adaptive defense machinery that limits the genome invasion of mobile genetic elements. It confers adaptive immunity to bacteria by capturing a protospacer fragment from invading foreign DNA, which is later inserted into the leader proximal end of CRIPSR array and serves as immunological memory to recognize recurrent invasions. The universally conserved Cas1 and Cas2 form an integration complex that is known to mediate the protospacer invasion into the CRISPR array. However, the mechanism by which this protospacer fragment gets integrated in a directional fashion into the leader proximal end is elusive. Here, we employ CRISPR/dCas9 mediated immunoprecipitation and genetic analysis to identify Integration Host Factor (IHF) as an indispensable accessory factor for spacer acquisition in Escherichia coli. Further, we show that the leader region abutting the first CRISPR repeat localizes IHF and Cas1–2 complex. IHF binding to the leader region induces bending by about 120° that in turn engenders the regeneration of the cognate binding site for protospacer bound Cas1–2 complex and brings it in proximity with the first CRISPR repeat. This appears to guide Cas1–2 complex to orient the protospacer invasion towards the leader-repeat junction thus driving the integration in a polarized fashion.
Nucleic Acids Research | 2014
Ankita Punetha; Raveendran Sivathanu; Baskaran Anand
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) in association with CRISPR-associated (Cas) proteins constitutes a formidable defense system against mobile genetic elements in prokaryotes. In type I-C, the ribonucleoprotein surveillance complex comprises only three Cas proteins, namely, Cas5d, Csd1 and Csd2. Unlike type I-E that uses Cse3/CasE for metal-independent CRISPR RNA maturation, type I-C that lacks this deputes Cas5d to process the pre-crRNA. Here, we report the promiscuous DNase activity of Cas5d in presence of divalent metals. Remarkably, the active site that renders RNA hydrolysis may be tuned by metal to act on DNA substrates too. Further, the realization that Csd1 is a fusion of its functional homolog Cse1/CasA and Cse2/CasB forecasts that the stoichiometry of the constituents of the surveillance complex in type I-C may differ from type I-E. Although Csd2 seems to be inert, Csd1 too exhibits RNase and metal-dependent DNase activity. Thus, in addition to their proposed functions, the DNase activity of Cas5d and Csd1 may also enable them to be co-opted in adaptation and interference stages of CRISPR immunity wherein interaction with DNA substrates is involved.
Nucleic Acids Research | 2013
Megha Gulati; Nikhil Jain; Baskaran Anand; Balaji Prakash; Robert A. Britton
Ribosome biogenesis GTPase A protein (RbgA) is an essential GTPase required for the biogenesis of the 50S subunit in Bacillus subtilis. Homologs of RbgA are widely distributed in bacteria and eukaryotes and are implicated in ribosome assembly in the mitochondria, chloroplast and cytoplasm. Cells depleted of RbgA accumulate an immature large subunit that is missing key ribosomal proteins. RbgA, unlike many members of the Ras superfamily of GTPases, lacks a defined catalytic residue for carrying out guanosine triphosphate (GTP) hydrolysis. To probe RbgA function in ribosome assembly, we used a combined bioinformatics, genetic and biochemical approach. We identified a RNA-binding domain within the C-terminus of RbgA that is structurally similar to AmiR–NasR Transcription Anti-termination Regulator (ANTAR) domains, which are known to bind structured RNA. Mutation of key residues in the ANTAR domain altered RbgA association with the ribosome. We identified a putative catalytic residue within a highly conserved region of RbgA, His9, which is contained within a similar PGH motif found in elongation factor Tu (EF-Tu) that is required for GTP hydrolysis on interaction with the ribosome. Finally, our results support a model in which the GTPase activity of RbgA directly participates in the maturation of the large subunit rather than solely promoting dissociation of RbgA from the 50S subunit.
RNA Biology | 2016
Himanshu Sharma; Baskaran Anand
ABSTRACT Assembly factors promote the otherwise non-spontaneous maturation of ribosome under physiological conditions inside the cell. Systematic identification and characterization of candidate assembly factors are fraught with bottlenecks due to lack of facile assay system to capture assembly defects. Here, we show that bimolecular fluorescence complementation (BiFC) allows detection of assembly defects that are induced by the loss of assembly factors. The fusion of N and C-terminal fragments of Venus fluorescent protein to the ribosomal proteins uS13 and uL5, respectively, in Escherichia coli facilitated the incorporation of the tagged uS13 and uL5 onto the respective ribosomal subunits. When the ribosomal subunits associated to form the 70S particle, the complementary fragments of Venus were brought into proximity and rendered the Venus fluorescent. Assembly defects that inhibit the subunits association were provoked by either the loss of the known assembly factors such as RsgA and SrmB or the presence of small molecule inhibitors of ribosome maturation such as Lamotrigine and several ribosome-targeting antibiotics and these showed abrogation of the fluorescence complementation. This suggests that BiFC can be employed as a surrogate measure to detect ribosome assembly defects proficiently by circumventing the otherwise cumbersome procedures. BiFC thus offers a facile platform not only for systematic screening to validate potential assembly factors but also to discover novel small molecule inhibitors of ribosome assembly toward mapping the complex assembly landscape of ribosome.
Biochemistry | 2013
Baskaran Anand; Soneya Majumdar; Balaji Prakash