Basma El Yacoubi
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Basma El Yacoubi.
Annual Review of Genetics | 2012
Basma El Yacoubi; Marc Bailly; Valérie de Crécy-Lagard
Posttranscriptional modifications of transfer RNAs (tRNAs) are critical for all core aspects of tRNA function, such as folding, stability, and decoding. Most tRNA modifications were discovered in the 1970s; however, the near-complete description of the genes required to introduce the full set of modifications in both yeast and Escherichia coli is very recent. This led to a new appreciation of the key roles of tRNA modifications and tRNA modification enzymes as checkpoints for tRNA integrity and for integrating translation with other cellular functions such as transcription, primary metabolism, and stress resistance. A global survey of tRNA modification enzymes shows that the functional constraints that drive the presence of modifications are often conserved, but the solutions used to fulfill these constraints differ among different kingdoms, organisms, and species.
The EMBO Journal | 2011
Basma El Yacoubi; Isabelle Hatin; Christopher Deutsch; Tamer Kahveci; Jean-Pierre Rousset; Dirk Iwata-Reuyl; Alexey G. Murzin; Valérie de Crécy-Lagard
The YgjD/Kae1 family (COG0533) has been on the top‐10 list of universally conserved proteins of unknown function for over 5 years. It has been linked to DNA maintenance in bacteria and mitochondria and transcription regulation and telomere homeostasis in eukaryotes, but its actual function has never been found. Based on a comparative genomic and structural analysis, we predicted this family was involved in the biosynthesis of N6‐threonylcarbamoyl adenosine, a universal modification found at position 37 of tRNAs decoding ANN codons. This was confirmed as a yeast mutant lacking Kae1 is devoid of t6A. t6A− strains were also used to reveal that t6A has a critical role in initiation codon restriction to AUG and in restricting frameshifting at tandem ANN codons. We also showed that YaeZ, a YgjD paralog, is required for YgjD function in vivo in bacteria. This work lays the foundation for understanding the pleiotropic role of this universal protein family.
Nucleic Acids Research | 2009
Basma El Yacoubi; Benjamin J. Lyons; Yulien Cruz; Robert Reddy; Brian E. Nordin; Fabio Agnelli; James R. Williamson; Paul Schimmel; Manal A. Swairjo; Valérie de Crécy-Lagard
Threonylcarbamoyladenosine (t6A) is a universal modification found at position 37 of ANN decoding tRNAs, which imparts a unique structure to the anticodon loop enhancing its binding to ribosomes in vitro. Using a combination of bioinformatic, genetic, structural and biochemical approaches, the universal protein family YrdC/Sua5 (COG0009) was shown to be involved in the biosynthesis of this hypermodified base. Contradictory reports on the essentiality of both the yrdC wild-type gene of Escherichia coli and the SUA5 wild-type gene of Saccharomyces cerevisiae led us to reconstruct null alleles for both genes and prove that yrdC is essential in E. coli, whereas SUA5 is dispensable in yeast but results in severe growth phenotypes. Structural and biochemical analyses revealed that the E. coli YrdC protein binds ATP and preferentially binds RNAThr lacking only the t6A modification. This work lays the foundation for elucidating the function of a protein family found in every sequenced genome to date and understanding the role of t6A in vivo.
Journal of Biological Chemistry | 2012
Christopher Deutsch; Basma El Yacoubi; Valérie de Crécy-Lagard; Dirk Iwata-Reuyl
Background: The modified nucleoside t6A is important for tRNA function. Results: The proteins YrdC/YgjD/YeaZ/YjeE are necessary and sufficient for the biosynthesis of t6A in bacteria. Conclusion: Only the universal protein families YrdC and YgjD are conserved in the biosynthesis of t6A among all organisms. Significance: Elucidating the enzymes responsible for t6A biosynthesis, a universal modification of tRNA, is central to understanding its physiological role. The anticodon stem-loop (ASL) of transfer RNAs (tRNAs) drives decoding by interacting directly with the mRNA through codon/anticodon pairing. Chemically complex nucleoside modifications found in the ASL at positions 34 or 37 are known to be required for accurate decoding. Although over 100 distinct modifications have been structurally characterized in tRNAs, only a few are universally conserved, among them threonylcarbamoyl adenosine (t6A), found at position 37 in the anticodon loop of a subset of tRNA. Structural studies predict an important role for t6A in translational fidelity, and in vivo work supports this prediction. Although pioneering work in the 1970s identified the fundamental substrates for t6A biosynthesis, the enzymes responsible for its biosynthesis have remained an enigma. We report here the discovery that in bacteria four proteins (YgjD, YrdC, YjeE, and YeaZ) are both necessary and sufficient for t6A biosynthesis in vitro. Notably, YrdC and YgjD are members of universally conserved families that were ranked among the top 10 proteins of unknown function in need of functional characterization, while YeaZ and YjeE are specific to bacteria. This latter observation, coupled with the essentiality of all four proteins in bacteria, establishes this pathway as a compelling new target for antimicrobial development.
BMC Genomics | 2011
Svetlana Gerdes; Basma El Yacoubi; Marc Bailly; Ian K. Blaby; Crysten E. Blaby-Haas; Linda Jeanguenin; Aurora Lara-Núñez; Anne Pribat; Jeffrey C. Waller; Andreas Wilke; Ross Overbeek; Andrew D. Hanson; Valérie de Crécy-Lagard
BackgroundIdentifying functions for all gene products in all sequenced organisms is a central challenge of the post-genomic era. However, at least 30-50% of the proteins encoded by any given genome are of unknown or vaguely known function, and a large number are wrongly annotated. Many of these ‘unknown’ proteins are common to prokaryotes and plants. We set out to predict and experimentally test the functions of such proteins. Our approach to functional prediction integrates comparative genomics based mainly on microbial genomes with functional genomic data from model microorganisms and post-genomic data from plants. This approach bridges the gap between automated homology-based annotations and the classical gene discovery efforts of experimentalists, and is more powerful than purely computational approaches to identifying gene-function associations.ResultsAmong Arabidopsis genes, we focused on those (2,325 in total) that (i) are unique or belong to families with no more than three members, (ii) occur in prokaryotes, and (iii) have unknown or poorly known functions. Computer-assisted selection of promising targets for deeper analysis was based on homology-independent characteristics associated in the SEED database with the prokaryotic members of each family. In-depth comparative genomic analysis was performed for 360 top candidate families. From this pool, 78 families were connected to general areas of metabolism and, of these families, specific functional predictions were made for 41. Twenty-one predicted functions have been experimentally tested or are currently under investigation by our group in at least one prokaryotic organism (nine of them have been validated, four invalidated, and eight are in progress). Ten additional predictions have been independently validated by other groups. Discovering the function of very widespread but hitherto enigmatic proteins such as the YrdC or YgfZ families illustrates the power of our approach.ConclusionsOur approach correctly predicted functions for 19 uncharacterized protein families from plants and prokaryotes; none of these functions had previously been correctly predicted by computational methods. The resulting annotations could be propagated with confidence to over six thousand homologous proteins encoded in over 900 bacterial, archaeal, and eukaryotic genomes currently available in public databases.
Journal of Biological Chemistry | 2006
Basma El Yacoubi; Shilah A. Bonnett; Jessica N. Anderson; Manal A. Swairjo; Dirk Iwata-Reuyl; Valérie de Crécy-Lagard
GTP cyclohydrolase I (GCYH-I) is the first enzyme of the de novo tetrahydrofolate biosynthetic pathway present in bacteria, fungi, and plants, and encoded in Escherichia coli by the folE gene. It is also the first enzyme of the biopterin (BH4) pathway in Homo sapiens, where it is encoded by a homologous folE gene. A homology-based search of GCYH-I orthologs in all sequenced bacteria revealed a group of microbes, including several clinically important pathogens, that encoded all of the enzymes of the tetrahydrofolate biosynthesis pathway but GCYH-I, suggesting that an alternate family was present in these organisms. A prediction based on phylogenetic occurrence and physical clustering identified the COG1469 family as a potential candidate for this missing enzyme family. The GCYH-I activity of COG1469 family proteins from a variety of sources (Thermotoga maritima, Bacillus subtilis, Acinetobacter baylyi, and Neisseria gonorrhoeae) was experimentally verified in vivo and/or in vitro. Although there is no detectable sequence homology with the canonical GCYH-I, protein fold recognition based on sequence profiles, secondary structure, and solvation potential information suggests that, like GCYH-I proteins, COG1469 proteins are members of the tunnel-fold (T-fold) structural superfamily. This new GCYH-I family is found in ∼20% of sequenced bacteria and is prevalent in Archaea, but the family is to this date absent in Eukarya.
Nucleic Acids Research | 2011
Marie-Claire Daugeron; Tineke L. Lenstra; Martina Frizzarin; Basma El Yacoubi; Xipeng Liu; Agnès Baudin-Baillieu; Philip Lijnzaad; Laurence Decourty; Cosmin Saveanu; Alain Jacquier; Frank C. P. Holstege; Valérie de Crécy-Lagard; Herman van Tilbeurgh; Domenico Libri
The EKC/KEOPS complex is universally conserved in Archaea and Eukarya and has been implicated in several cellular processes, including transcription, telomere homeostasis and genomic instability. However, the molecular function of the complex has remained elusive so far. We analyzed the transcriptome of EKC/KEOPS mutants and observed a specific profile that is highly enriched in targets of the Gcn4p transcriptional activator. GCN4 expression was found to be activated at the translational level in mutants via the defective recognition of the inhibitory upstream ORFs (uORFs) present in its leader. We show that EKC/KEOPS mutants are defective for the N6-threonylcarbamoyl adenosine modification at position 37 (t6A37) of tRNAs decoding ANN codons, which affects initiation at the inhibitory uORFs and provokes Gcn4 de-repression. Structural modeling reveals similarities between Kae1 and bacterial enzymes involved in carbamoylation reactions analogous to t6A37 formation, supporting a direct role for the EKC in tRNA modification. These findings are further supported by strong genetic interactions of EKC mutants with a translation initiation factor and with threonine biosynthesis genes. Overall, our data provide a novel twist to understanding the primary function of the EKC/KEOPS and its impact on several essential cellular functions like transcription and telomere homeostasis.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Samuel M. D. Seaver; Svetlana Gerdes; Océane Frelin; Claudia Lerma-Ortiz; Louis Mt Bradbury; Rémi Zallot; Ghulam Hasnain; Thomas D. Niehaus; Basma El Yacoubi; Shiran Pasternak; Robert Olson; Gordon D. Pusch; Ross Overbeek; Rick Stevens; Valérie de Crécy-Lagard; Doreen Ware; Andrew D. Hanson; Christopher S. Henry
Significance Genes must be annotated with their correct functions if genome data are to support hypothesis building and metabolic engineering. PlantSEED was developed to streamline the process of annotating plant genome sequences, to construct metabolic models based on genome annotations automatically, and to use models to test the annotation of these sequences, allowing the detection of gaps and errors in gene annotations and the prediction of new functions. PlantSEED is designed to grow in an iterative manner by including new plant genome sequences, new annotations harvested from the literature, and improved biochemical data, all of which are integrated in a consistent manner into the PlantSEED genomes and metabolic models. The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today’s annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed.
Journal of Bacteriology | 2008
Gabriella Phillips; Basma El Yacoubi; Benjamin J. Lyons; Sophie Alvarez; Dirk Iwata-Reuyl; Valérie de Crécy-Lagard
Queuosine (Q) and archaeosine (G(+)) are hypermodified ribonucleosides found in tRNA. Q is present in the anticodon region of tRNA(GUN) in Eukarya and Bacteria, while G(+) is found at position 15 in the D-loop of archaeal tRNA. Prokaryotes produce these 7-deazaguanosine derivatives de novo from GTP through the 7-cyano-7-deazaguanine (pre-Q(0)) intermediate, but mammals import the free base, queuine, obtained from the diet or the intestinal flora. By combining the results of comparative genomic analysis with those of genetic studies, we show that the first enzyme of the folate pathway, GTP cyclohydrolase I (GCYH-I), encoded in Escherichia coli by folE, is also the first enzyme of pre-Q(0) biosynthesis in both prokaryotic kingdoms. Indeed, tRNA extracted from an E. coli DeltafolE strain is devoid of Q and the deficiency is complemented by expressing GCYH-I-encoding genes from different bacterial or archaeal origins. In a similar fashion, tRNA extracted from a Haloferax volcanii strain carrying a deletion of the GCYH-I-encoding gene contains only traces of G(+). These results link the production of a tRNA-modified base to primary metabolism and further clarify the biosynthetic pathway for these complex modified nucleosides.
Archaea | 2010
Ian K. Blaby; Gabriela Phillips; Crysten E. Blaby-Haas; Kevin S. Gulig; Basma El Yacoubi; Valérie de Crécy-Lagard
With the availability of a genome sequence and increasingly sophisticated genetic tools, Haloferax volcanii is becoming a model for both Archaea and halophiles. In order for H. volcanii to reach a status equivalent to Escherichia coli, Bacillus subtilis, or Saccharomyces cerevisiae, a gene knockout collection needs to be constructed in order to identify the archaeal essential gene set and enable systematic phenotype screens. A streamlined gene-deletion protocol adapted for potential automation was implemented and used to generate 22 H. volcanii deletion strains and identify several potentially essential genes. These gene deletion mutants, generated in this and previous studies, were then analyzed in a high-throughput fashion to measure growth rates in different media and temperature conditions. We conclude that these high-throughput methods are suitable for a rapid investigation of an H. volcanii mutant library and suggest that they should form the basis of a larger genome-wide experiment.