Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bassem Allam is active.

Publication


Featured researches published by Bassem Allam.


PLOS Biology | 2014

The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing.

Patrick J. Keeling; Fabien Burki; Heather M. Wilcox; Bassem Allam; Eric E. Allen; Linda A. Amaral-Zettler; E. Virginia Armbrust; John M. Archibald; Arvind K. Bharti; Callum J. Bell; Bank Beszteri; Kay D. Bidle; Lisa Campbell; David A. Caron; Rose Ann Cattolico; Jackie L. Collier; Kathryn J. Coyne; Simon K. Davy; Phillipe Deschamps; Sonya T. Dyhrman; Bente Edvardsen; Ruth D. Gates; Christopher J. Gobler; Spencer J. Greenwood; Stephanie M. Guida; Jennifer L. Jacobi; Kjetill S. Jakobsen; Erick R. James; Bethany D. Jenkins; Uwe John

Current sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the worlds oceans.


The Biological Bulletin | 2009

Lectins Associated With the Feeding Organs of the Oyster Crassostrea virginica Can Mediate Particle Selection

Emmanuelle Pales Espinosa; Mickael Perrigault; J. Evan Ward; Sandra E. Shumway; Bassem Allam

Despite advances in the study of particle selection in suspension-feeding bivalves, the mechanisms upon which bivalves rely to discriminate among particles have not been elucidated. We hypothesized that particle sorting in suspension-feeding bivalves could be based, in part, on a biochemical recognition mechanism mediated by lectins within the mucus that covers the feeding organs. Using Crassostrea virginica, the Eastern oyster, our investigations demonstrated that lectins from oyster mucus can specifically bind several microalgal species as well as different types of red blood cells (RBC), triggering their agglutination. Agglutination of microalgal species and RBC varied with the source of mucus (gills vs. labial palps). Hemagglutination and hemagglutination inhibition assays emphasized that mucus contains several lectins. In feeding experiments, Nitzschia closterium and Tetraselmis maculata were separately incubated with mucus before being fed to oysters. Results showed that pre-treating these microalgae with mucus significantly alters the ability of oysters to sort particles. In another experiment, oysters were fed a mixture of microspheres coated with either bovine serum albumin (BSA) or glucosamide-BSA. Results show that oysters preferentially ingest microspheres with bound carbohydrates, highlighting probable interactions between lectins and carbohydrates in the mechanisms of microalgae recognition. This study confirms the presence of lectins in mucus that covers the feeding organs of oysters and suggests a new concept with regard to particle processing by suspension-feeding bivalves: specific interactions between carbohydrates on the surface of particles and lectins within the mucus mediate the selection and rejection processes.


BMC Genomics | 2009

Identification and expression of differentially expressed genes in the hard clam, Mercenaria mercenaria, in response to quahog parasite unknown (QPX)

Mickael Perrigault; Arnaud Tanguy; Bassem Allam

BackgroundThe hard clam, Mercenaria mercenaria, has been affected by severe mortality episodes associated with the protistan parasite QPX (Quahog Parasite Unknown) for several years. Despite the commercial importance of hard clams in the United States, molecular bases of defense mechanisms in M. mercenaria, especially during QPX infection, remain unknown.ResultsOur study used suppression subtractive hybridization (SSH), as well as the construction of cDNA libraries from hemocytes to identify genes related to the defense of the hard clam against its parasite. Hard clams were experimentally infected with QPX and SSH was performed on mRNA samples extracted from mantle and gill tissues at different times post-challenge. A total of 298 clones from SSH libraries and 1352 clones from cDNA libraries were sequenced. Among these sequences, homologies with genes involved in different physiological processes related to signal transduction, stress response, immunity and protein synthesis were identified. Quantitative PCR revealed significant changes in the expression of several of these genes in response to QPX challenge and demonstrated significant correlations in terms of levels of gene expression between intermediates of signalling pathways and humoral defense factors, such as big defensin and lysozyme.ConclusionResults of this study allowed the detection of modifications caused by QPX at the transcriptional level providing insight into clam immune response to the infection. These investigations permitted the identification of candidate genes and pathways for further analyses of biological bases of clam resistance to QPX allowing for a better understanding of bivalve immunity in general.


Archive | 2009

A PROLONGED THERMAL STRESS EXPERIMENT ON THE AMERICAN LOBSTER, HOMARUS AMERICANUS

Alistair D. M. Dove; Bassem Allam; Jason J. Powers; Mark S. Sokolowski

Abstract Two groups of lobsters were maintained for 31 days at temperatures environmentally realistic for Long Island Sound to investigate the effects of prolonged thermal stress on the physiology of lobsters. One group was held at 16°C, representative of late spring (controls), and the other group at 23°C, representative of late summer/early fall (treatments). In vivo hemolymph pH and samples for serum chemistry analysis were taken before and after temperature exposure. Hemolymph samples were taken before, during and after temperature exposure to investigate effects on hemocyte phagocytic activity assay and total hemocyte counts. Treatment lobsters developed a significant pH acidosis. Other serum index changes included marked hyperchloremia and hyperproteinemia. Phagocytic activity of hemocytes was significantly depressed (~60%) in treatment lobsters after 14 days and remained so until the end of the experiment. Similarly, total hemocyte counts increased strongly in the thermal stress group after 14 days, and remained so until the end of the experiment. Results suggest that late summer temperatures in the bottom waters of Long Island Sound may have profound deleterious effects on the physiology of lobsters. Recent changes in water temperature regimes in the bottom waters of Long Island Sound suggest that it may in the long term become inhospitable for lobster survival.


The Biological Bulletin | 2010

Microalgal Cell Surface Carbohydrates as Recognition Sites for Particle Sorting in Suspension-Feeding Bivalves

Emmanuelle Pales Espinosa; Mickael Perrigault; J. Evan Ward; Sandra E. Shumway; Bassem Allam

Cell surface carbohydrates play important roles in cell recognition mechanisms. Recently, we provided evidence that particle selection by suspension-feeding bivalves can be mediated by interactions between carbohydrates associated with the particle surface and lectins present in mucus covering bivalve feeding organs. In this study, we used lectins tagged with fluorescein isothiocyanate (FITC) to characterize carbohydrate moieties on the surface of microalgal species and evaluate the effect of oyster mucus on lectin binding. These analyses revealed that concanavalin A (Con A), one of six lectins tested, bound to Isochrysis sp., while Nitzschia closterium reacted with Pisum sativum agglutinin (PNA) and peanut agglutinin (PEA). The cell surface of Rhodomonas salina bound with PNA and Con A, and Tetraselmis maculata cell surface was characterized by binding with PNA, PEA, and Con A. Pre-incubation of microalgae with oyster pallial mucus significantly decreased the binding of FITC-labeled lectins, revealing that lectins present in mucus competitively blocked binding sites. This decrease was reversed by washing mucus-coated microalgae with specific carbohydrates. These results were used to design a feeding experiment to evaluate the effect of lectins on sorting of microalgae by oysters. Crassostrea virginica fed with an equal ratio of Con A-labeled Isochrysis sp. and unlabeled Isochrysis sp. produced pseudofeces that were significantly enriched in Con A-labeled Isochrysis sp. and depleted in unlabeled microalgae. Selection occurred even though two physical-chemical surface characteristics of the cells in each treatment did not differ significantly. This work confirms the involvement of carbohydrate-lectin interaction in the particle sorting mechanism in oysters, and provides insights into the carbohydrate specificity of lectins implicated in the selection of microalgal species.


Ecohealth | 2007

Characteristics of Marine Aggregates in Shallow-water Ecosystems: Implications for Disease Ecology

M. Maille Lyons; Yuk-Ting Lau; Wade E. Carden; J. Evan Ward; Steven B. Roberts; Roxanna Smolowitz; Joseph J. Vallino; Bassem Allam

Marine aggregates were evaluated for their potential role in the ecology of aquatic pathogens using underwater video surveys coupled with direct collection of aggregates in modified settling cones. Six locations, two each in New York, Connecticut, and Massachusetts, were surveyed over 8 months to explore differences in the characteristics of aggregates found in habitats populated by clams (Mercenaria mercenaria) and oysters (Crassostrea virginica). Microaggregate (<500 μm) concentrations were always greater than macroaggregate (>500 μm) concentrations, but peak concentrations of macroaggregates and microaggregates, mean size of particles, and volume fraction of aggregated material varied among the six shallow-water habitats. Concentrations (colony-forming units per ml) of total heterotrophic bacteria (THB) and total mesophilic pathogenic bacteria (MPB) from samples of aggregates were significantly different among the four locations bordering Long Island Sound (LIS). The highest concentrations and enrichment factors in aggregates were observed in August for THB and in June for MPB. Significant correlations were detected for salinity and the concentrations and enrichment factors of THB in aggregates and for the concentrations and percentages of MPB in seawater samples. Significant correlations were also detected for temperature and the concentrations of MPB in aggregates and the enrichment factors for THB and MPB (marginal significance). Bacterial species identified in association with aggregates included: Vibrio cholerea, V. parahaemolyticus, V. vulnificus, V. alginolyticus, Aeromonas hydrophila, Pseudomonas aeruginosa, Escherichia coli, and Mycobacteria sp. These results have important implications for the way in which aquatic pathogens are collected, quantified, and monitored for risk-based surveillance in shallow-water ecosystems.


Journal of Invertebrate Pathology | 2011

Effects of temperature on hard clam (Mercenaria mercenaria) immunity and QPX (Quahog Parasite Unknown) disease development: II. Defense parameters

Mickael Perrigault; Soren F. Dahl; Emmanuelle Pales Espinosa; Laura Gambino; Bassem Allam

Quahog Parasite Unknown (QPX) is a protistan parasite affecting hard clams Mercenaria mercenaria along the Northeastern coast of the United States. The geographic distribution and occurrence of disease epizootics suggests a primary role of temperature in disease development. This study was designed to investigate the effect of temperature on constitutive and QPX-induced defense factors in M. mercenaria. Control and QPX-challenged (both experimentally and naturally) clams were maintained at 13, 21 and 27°C for 4 months. Control and experimentally-infected clams originated from a southern broodstock (Florida, no prior reports of disease outbreak) while naturally-infected clams originated from a northern broodstock (Massachusetts, enzootic area). Standard and QPX-specific cellular and humoral defense parameters were assessed after 2 and 4 months. Measured parameters included total and differential hemocyte counts, reactive oxygen species production, phagocytic activity of hemocytes, lysozyme concentration in plasma, anti-QPX activity in plasma and resistance of hemocytes to cytotoxic QPX extracellular products. Results demonstrated a strong influence of temperature on constitutive clam defense factors with significant modulation of cellular and humoral parameters of control clams maintained at 13°C compared to 21 and 27°C. Similarly, clam response to QPX challenge was also affected by temperature. Challenged clams exhibited no difference from controls at 27°C whereas different responses were observed at 21°C and 13°C compared to controls. Despite differences in infection mode (experimentally or naturally infected) and clam origin (northern and southern broodstocks), similarities were observed at 13°C and 21°C between QPX infected clams from Florida and Massachusetts. Clam response to temperature and to QPX exhibited interesting relationship with QPX disease development highlighting major influence of temperature on disease development.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2010

Identification and molecular characterization of a mucosal lectin (MeML) from the blue mussel Mytilus edulis and its potential role in particle capture

Emmanuelle Pales Espinosa; Mickael Perrigault; Bassem Allam

Molecular recognition of food particles has been suspected to play an important role in particle selection in suspension feeding bivalves. Lectins are a group of sugar-binding proteins that are widely involved in biological recognition. They have been reported in mucus covering bivalves feeding organs and were recently shown to mediate particle sorting in these animals. In this study, we report a novel putative C-type lectin from the blue mussel Mytilus edulis. The cDNA of this lectin (hereby designated MeML for M. edulis mucocyte lectin) is 459bp long encoding a 152-residue protein. MeML presents a signal peptide and a single carbohydrate recognition domain (CRD) which contains a QPS (Gln, Pro, and Ser) motif and two putative conserved sites, WND and ENC, for calcium binding. MeML was expressed in mucocytes lining the epithelium of pallial organs (gills, labial palps and mantle) and intestine, and its expression was significantly up-regulated following starvation. MeML transcript was not detected in other tissues including hemocytes. MeML is suspected to play a role in the capture of food particle which further support the involvement of this lectin in particle selection mechanism.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2009

Innate immunity in the deep sea hydrothermal vent mussel Bathymodiolus azoricus

Raul Bettencourt; Paul R. Dando; Patrick Collins; Valentina Costa; Bassem Allam; Ricardo S. Santos

The interaction between microorganisms and host defense mechanisms is a decisive factor for the survival of marine bivalves. They rely on cell-mediated and humoral reactions to overcome the pathogens that naturally occur in the marine environment. In order to understand host defense reactions in animals inhabiting extreme environments we investigated some of the components from the immune system of the deep sea hydrothermal vent mussel Bathymodiolus azoricus. Cellular constituents in the hemolymph and extrapallial fluid were examined and led to the identification of three types of hemocytes revealing the granulocytes as the most abundant type of cell. To further characterize hemocyte types, the presence of cell surface carbohydrate epitopes was demonstrated with fluorescent WGA lectin, which was mostly ascribed to the granulocytes. Cellular reactions were then investigated by means of phagocytosis and by the activation of putative MAPKs using the microbial compounds zymosan, glucan, peptidoglycan and lipopolysaccharide. Two bacterial agents, Bacillus subtilis and Vibrio parahaemolyticus, were also used to stimulate hemocytes. The results showed that granulocytes were the main phagocytic cells in both hemolymph and extrapallial fluid of B. azoricus. Western blotting analyses using commercially available antibodies against ERK, p38 and JNK, suggested that these putative kinases are involved in signal transduction pathways during experimental stimulation of B. azoricus hemocytes. The fluorescent Ca(2+) indicator Fura-2 AM was also insightful in demonstrating hemocyte stimulation in the presence of laminarin or live V. parahaemolyticus. Finally, the expression of the antibacterial gene mytilin was analyzed in gill tissues by means of RT-PCR and whole-mount in situ hybridization. Mytilin transcripts were localized in hemocytes underlying gill epithelium. Moreover, mytilin was induced by exposure of live animals to V. parahaemolyticus. These findings support the premise of a conserved innate immune system in B. azoricus. Such system is comparable to other Bivalves and involves the participation of cellular and humoral components.


PLOS ONE | 2011

Climate change, precipitation and impacts on an estuarine refuge from disease.

Jeffrey S. Levinton; Michael H. Doall; David K. Ralston; Adam Starke; Bassem Allam

Background Oysters play important roles in estuarine ecosystems but have suffered recently due to overfishing, pollution, and habitat loss. A tradeoff between growth rate and disease prevalence as a function of salinity makes the estuarine salinity transition of special concern for oyster survival and restoration. Estuarine salinity varies with discharge, so increases or decreases in precipitation with climate change may shift regions of low salinity and disease refuge away from optimal oyster bottom habitat, negatively impacting reproduction and survival. Temperature is an additional factor for oyster survival, and recent temperature increases have increased vulnerability to disease in higher salinity regions. Methodology/Principal Findings We examined growth, reproduction, and survival of oysters in the New York Harbor-Hudson River region, focusing on a low-salinity refuge in the estuary. Observations were during two years when rainfall was above average and comparable to projected future increases in precipitation in the region and a past period of about 15 years with high precipitation. We found a clear tradeoff between oyster growth and vulnerability to disease. Oysters survived well when exposed to intermediate salinities during two summers (2008, 2010) with moderate discharge conditions. However, increased precipitation and discharge in 2009 reduced salinities in the region with suitable benthic habitat, greatly increasing oyster mortality. To evaluate the estuarine conditions over longer periods, we applied a numerical model of the Hudson to simulate salinities over the past century. Model results suggest that much of the region with suitable benthic habitat that historically had been a low salinity refuge region may be vulnerable to higher mortality under projected increases in precipitation and discharge. Conclusions/Significance Predicted increases in precipitation in the northeastern United States due to climate change may lower salinities past important thresholds for oyster survival in estuarine regions with appropriate substrate, potentially disrupting metapopulation dynamics and impeding oyster restoration efforts, especially in the Hudson estuary where a large basin constitutes an excellent refuge from disease.

Collaboration


Dive into the Bassem Allam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Evan Ward

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge