Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bassem R. Haddad is active.

Publication


Featured researches published by Bassem R. Haddad.


American Journal of Pathology | 2012

ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells.

Xuefeng Liu; Virginie Ory; Sandra Chapman; Hang Yuan; Chris Albanese; Bhaskar Kallakury; Olga Timofeeva; Caitlin Nealon; Aleksandra Dakic; Vera Simic; Bassem R. Haddad; Johng S. Rhim; Anatoly Dritschilo; Anna T. Riegel; Alison A. McBride; Richard Schlegel

We demonstrate that a Rho kinase inhibitor (Y-27632), in combination with fibroblast feeder cells, induces normal and tumor epithelial cells from many tissues to proliferate indefinitely in vitro, without transduction of exogenous viral or cellular genes. Primary prostate and mammary cells, for example, are reprogrammed toward a basaloid, stem-like phenotype and form well-organized prostaspheres and mammospheres in Matrigel. However, in contrast to the selection of rare stem-like cells, the described growth conditions can generate 2 × 10(6) cells in 5 to 6 days from needle biopsies, and can generate cultures from cryopreserved tissue and from fewer than four viable cells. Continued cell proliferation is dependent on both feeder cells and Y-27632, and the conditionally reprogrammed cells (CRCs) retain a normal karyotype and remain nontumorigenic. This technique also efficiently establishes cell cultures from human and rodent tumors. For example, CRCs established from human prostate adenocarcinoma displayed instability of chromosome 13, proliferated abnormally in Matrigel, and formed tumors in mice with severe combined immunodeficiency. The ability to rapidly generate many tumor cells from small biopsy specimens and frozen tissue provides significant opportunities for cell-based diagnostics and therapeutics (including chemosensitivity testing) and greatly expands the value of biobanking. In addition, the CRC method allows for the genetic manipulation of epithelial cells ex vivo and their subsequent evaluation in vivo in the same host.


PLOS ONE | 2008

Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells.

Yutaka Kondo; Lanlan Shen; Saira Ahmed; Yanis Boumber; Yoshitaka Sekido; Bassem R. Haddad; Jean-Pierre Issa

Background Modifications of the histone amino-terminal tails affect access of regulatory factors and complexes to chromatin and thereby influence biological processes. Cancer cells are characterized by prominent epigenetic dysregulation, including histone modifications. However, the functional roles of the histone methyltransferases (HMT) in cancer remain unclear. Methodology/Principal Findings We studied RNAi-based inhibition (knockdown, KD) of 2 different H3K9 HMTs, SUV39H1 and G9a. Knockdown of the 2 HMTs in PC3 cancer cell line markedly inhibited cell growth and caused profound morphological changes with loss of telomerase activity and shortened telomeres. SUV39H1 KD cells showed substantial increase in G2/M fraction. G9a KD cells showed increased DNA content (1.7-fold in 2 independent clones) compared with FACS analyses to control. Karyotype analyses showed that this was due to an increased number of chromosomes (from 61 to 102) in G9a KD cells compared to parental PC3. Intriguingly, we found abnormal centrosome morphology and number in about 25% of the G9a KD cells, while centrosomes were morphologically normal in control cells. Microarray analyses after KD of SUV39H1 or G9a showed very few genes up-regulated among the 39,000 genes. The silenced tumor-suppressor genes p16 and RASSF1A were not activated in KD cells. Conclusions/Significance These data suggest that the 2 HMTs, SUV39H1 and G9a are required to perpetuate the malignant phenotype. Furthermore, G9a plays a critical role in regulating centrosome duplication presumably through chromatin structure rather than through affecting gene expression in cancer cells. Targeting these histone methyltransferases may be of therapeutic benefit in cancers.


Stem Cells and Development | 2009

Pluripotent Stem Cells Derived From Adult Human Testes

Nady Golestaneh; Maria Kokkinaki; Disha Pant; Jiji Jiang; David DeStefano; Carlos Fernandez-Bueno; Janice D. Rone; Bassem R. Haddad; G. Ian Gallicano; Martin Dym

Recent reports have demonstrated that adult tissue cells can be induced to pluripotency, the iPS cells, mostly with the addition of genes delivered using viruses. Also, several publications both in mouse and in human have demonstrated that spermatogonial stem cells (SSCs) from testes can convert back to embryonic stem (ES)-like cells without the addition of genes. Furthermore, these pluripotent ES-like cells can differentiate into all three germ layers and organ lineages. Thus, SSCs have great potential for cell-based, autologous organ regeneration therapy for various diseases. We obtained testes from organ donors and using 1 g pieces of tissue (biopsy size) we demonstrate that testis germ cells (putative SSCs and/or their progenitors) reprogram to pluripotency when removed from their stem cell niche and when appropriate growth factors and reagents in embryonic stem cell medium are added. In addition, our method of obtaining pluripotent ES-like cells from germ cells is simpler than the described methods and may be more suitable if this procedure is developed for the clinic to obtain pluripotent cells to cure disease.


Cancer Research | 2005

Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer.

Ekatherine Asatiani; Wen-Xin Huang; Antai Wang; Elizabeth Rodriguez Ortner; Luciane R. Cavalli; Bassem R. Haddad; Edward P. Gelmann

NKX3.1 is a prostate-specific homeoprotein and tumor suppressor that is affected by the loss of 8p21 in prostate cancer. In mice, Nkx3.1 haploinsufficiency results in prostatic dysplasia and complements cancer formation induced by loss of other suppressor genes. However, NKX3.1 expression can be immunohistochemically detected in most primary prostate cancers. We examined the relationship between suppressor gene haploinsufficiency, methylation, and quantitative NKX3.1 expression levels in primary prostate cancer. NKX3.1 gene copy number was assessed by microsatellite analysis, fluorescence in situ hybridization, and quantitative PCR. NKX3.1 gene methylation was determined in prostate cancer cell lines and we thereby identified potential CpG methylation sites for methylation-specific PCR analysis in tissues. We validated and then applied an internally controlled fluorescence immunomicroscopic assay for NKX3.1 protein expression in 48 primary prostate cancer specimens from radical prostatectomies. NKX3.1 loss of heterozygosity was found in 27 of 43 tissues tested. Classic CpG island methylation of the NKX3.1 gene was not found in either prostate cancer cell lines or tissues. However, in 33 of 40 samples tested, CpG sites at -921, -903, and -47 were methylated to a greater degree in malignant than in adjacent normal cells. In 43 of 48 samples, NKX3.1 protein expression was reduced from 0.34 to 0.90 compared with adjacent normal luminal epithelium (mean of all samples, 0.68; 95% confidence interval, 0.05). In 12 cases that also had high-grade prostatic intraepithelial neoplasia, NKX3.1 expression levels were similar in preinvasive and invasive cancer cells and significantly lower than adjacent normal cells. Even in the presence of allelic loss, NKX3.1 expression is reduced over a wide range in prostate cancer at the time of prostatectomy, suggesting that diverse factors influence expression. Samples with protein expression below the median level in cancer cells had both NKX3.1 deletion and selective CpG methylation.


Clinical Cancer Research | 2004

Overexpression of the Nuclear Receptor Coactivator AIB1 (SRC-3) during Progression of Pancreatic Adenocarcinoma

Ralf T. Henke; Bassem R. Haddad; Sung Eun Kim; Janice D. Rone; Aparna Mani; John Milburn Jessup; Anton Wellstein; Anirban Maitra; Anna T. Riegel

Purpose: The nuclear receptor coactivator amplified in breast cancer 1 (AIB1) was found to be amplified and overexpressed in breast and some other epithelial tumors. We have reported that expression of AIB1 is rate limiting for growth factor, as well as hormone signaling. Here, we assess the involvement of AIB1 in the development of pancreatic adenocarcinoma. Experimental Design: We investigated expression levels of AIB1 protein and mRNA in pancreatic cancer cell lines and in a series of archival pancreatic adenocarcinoma (n = 78), pancreatic intraepithelial neoplasia (n = 93), pancreatitis (n = 28), and normal pancreas tissues (n = 52). We also determined AIB1 gene copy numbers by fluorescence in situ hybridization in a subset of cases. Results: In normal pancreas ducts, we rarely found detectable levels of AIB1 mRNA or protein (<6% of the samples). In pancreatitis and low-grade intraepithelial neoplasia, we found an increased frequency of AIB1 expression (>14 and >23%, respectively) relative to normal tissues (P < 0.01). Adenocarcinoma, as well as high-grade intraepithelial neoplasia, showed increased levels as well as the highest frequency of AIB1 expression with >65% of samples positive for mRNA and protein (P < 0.0001 relative to the other groups). An increased copy number of the AIB1 gene, observed in 37% of cancers, may account for a portion of the increase in expression. Conclusions: AIB1 overexpression is frequent in pancreatic adenocarcinoma and its precursor lesions. On the basis of its rate-limiting role for the modulation of growth factor signals, we propose a major role of AIB1 in the multistage progression of pancreatic cancer.


Cancer Research | 2008

ERRγ Mediates Tamoxifen Resistance in Novel Models of Invasive Lobular Breast Cancer

Rebecca B. Riggins; Jennifer Lan; Uwe Klimach; Alan Zwart; Luciane R. Cavalli; Bassem R. Haddad; Li Chen; Ting Gong; Jianhua Xuan; Stephen P. Ethier; Robert Clarke

One-third of all estrogen receptor (ER)-positive breast tumors treated with endocrine therapy fail to respond, and the remainder is likely to relapse in the future. Almost all data on endocrine resistance has been obtained in models of invasive ductal carcinoma (IDC). However, invasive lobular carcinomas (ILC) comprise up to 15% of newly diagnosed invasive breast cancers each year and, whereas the incidence of IDC has remained relatively constant during the last 20 years, the prevalence of ILC continues to increase among postmenopausal women. We report a new model of Tamoxifen (TAM)-resistant invasive lobular breast carcinoma cells that provides novel insights into the molecular mechanisms of endocrine resistance. SUM44 cells express ER and are sensitive to the growth inhibitory effects of antiestrogens. Selection for resistance to 4-hydroxytamoxifen led to the development of the SUM44/LCCTam cell line, which exhibits decreased expression of ERalpha and increased expression of the estrogen-related receptor gamma (ERRgamma). Knockdown of ERRgamma in SUM44/LCCTam cells by siRNA restores TAM sensitivity, and overexpression of ERRgamma blocks the growth-inhibitory effects of TAM in SUM44 and MDA-MB-134 VI lobular breast cancer cells. ERRgamma-driven transcription is also increased in SUM44/LCCTam, and inhibition of activator protein 1 (AP1) can restore or enhance TAM sensitivity. These data support a role for ERRgamma/AP1 signaling in the development of TAM resistance and suggest that expression of ERRgamma may be a marker of poor TAM response.


Human Genetics | 1998

Identification of de novo chromosomal markers and derivatives by spectral karyotyping

Bassem R. Haddad; Evelin Schröck; Jeanne M. Meck; Janet M. Cowan; Hannah Young; Malcolm A. Ferguson-Smith; Stanislas du Manoir; Thomas Ried

Despite major advances in molecular cytogenetics during the past decade and the important diagnostic role that fluorescence in situ hybridization (FISH) plays in the characterization of chromosomal abnormalities, the usefulness of this technique remains limited by the number of spectrally distinguishable fluorochromes or fluorochrome combinations. Overcoming this major limitation would allow one to use FISH to screen the whole human genome for chromosomal aberrations which, until recently, was possible only through conventional karyotyping. A recently described molecular cytogenetics technology, 24-color FISH using spectral karyotyping (SKY), permits the simultaneous visualization of all human chromosomes in 24 different colors. Most chromosomal aberrations detected during cytogenetic evaluation can be resolved using routine cytogenetic techniques alone or in combination with single- or dual-color FISH. However, some cases remain unresolved, in particular de novo supernumerary marker chromosomes and de novo unbalanced structural rearrangements. These findings cause particular diagnostic and counseling concerns when detected during prenatal diagnosis. The purpose of this report is to demonstrate the application of SKY in the characterization of these de novo structural chromosomal abnormalities. Eight cases are described in this report. SKY has considerable diagnostic applications in prenatal diagnosis because of its reliability and speed. The identification of the chromosomal origin of markers and unbalanced translocations provides the patient, physician, and genetic counselor with better predictive information on the phenotype of the carrier.


Human Genetics | 2006

Molecular evaluation of foetuses with holoprosencephaly shows high incidence of microdeletions in the HPE genes.

Claude Bendavid; Christèle Dubourg; Isabelle Gicquel; Laurent Pasquier; Pascale Saugier-Veber; Marie-Renée Durou; Sylvie Jaillard; Thierry Frebourg; Bassem R. Haddad; Catherine Henry; Sylvie Odent; Véronique David

Holoprosencephaly (HPE), the most common structural malformation of the forebrain in humans, can be detected early during pregnancy using prenatal ultrasonography . Among foetuses with a normal karyotype, 14% have mutations in the four main HPE genes (SHH, ZIC2, SIX3 and TGIF). Genomic rearrangements have now been implicated in many genetic diseases, so we hypothesized that microdeletions in the major HPE genes may also be common in HPE foetuses with severe phenotype or other associated malformations. We screened the DNA obtained from 94 HPE foetuses with a normal karyotype for the presence of microdeletions involving the four major HPE genes (SHH, ZIC2, SIX3 and TGIF). Thirteen of the foetuses had a point mutation in one of the 4 genes and 81 had no known mutations. Quantitative multiplex PCR of short fluorescent fragments (QMPSF) analysis was used for rapid determination of HPE genes copy numbers and the identified microdeletions were confirmed by real time quantitative PCR, or fluorescent in situ hybridization (FISH) (if a cell line was available). Microdeletions were detected in 8 of 94 foetuses (8.5%) (2 in SHH, 2 in SIX3, 3 in ZIC2 and 1 in TGIF genes), and only among the 81 foetuses with a normal karyotype and no point mutations. These data suggest that microdeletions in the four main HPE genes are a common cause of prenatal HPE, as well as point mutations, and increase the total diagnosis rate close to ≈22.3% of foetuses with normal karyotype. Detection can be achieved by the QMPSF testing method that proved to be efficient for testing several genes in a single assay.


Breast Cancer Research and Treatment | 2004

Detection of LOH and mitochondrial DNA alterations in ductal lavage and nipple aspirate fluids from high-risk patients

Claudine Isaacs; Luciane R. Cavalli; Yoram Cohen; Marie Pennanen; Lalita K. Shankar; Matthew L. Freedman; Baljit Singh; Minetta C. Liu; Ann Gallagher; Janice D. Rone; Robert B. Dickson; David Sidransky; Bassem R. Haddad

We describe a method for the isolation of free DNA from ductal lavage (DL) and nipple aspirate fluid (NAF), and its evaluation for the presence of LOH at the BRCA1 and FHIT genes and for mitochondrial DNA (mtDNA) mutations at the D310 marker, to improve early detection of breast cancer. We evaluated 26 DL and six NAF samples from 14 women of known BRCA1 status, who have no clinical evidence of breast tumors: nine mutation carriers and five non-carriers. LOH studies at the BRCA1 locus were possible in 19/26 DL samples, and at the FHIT locus in 16/26 samples. In 4/9 mutation carriers we found LOH at the BRCA1 allele, and in two of these we also found LOH at the FHIT allele. In one of the mutation carriers with BRCA1 LOH, invasive breast cancer was subsequently detected, and the tumor showed the same LOH as the DL. In one of the true negatives, BRCA1 and FHIT LOH were detected. The mitochondrial studies were possible in all 26 DL samples and a somatic mutation was found in 3/9 carriers, two of whom also had LOH at the BRCA1 locus, and in none of the non-carriers. mtDNA mutation evaluation was possible in 4/6 NAF samples. The NAF and DL results were concordant. One NAF sample from a BRCA1 patient showed a mtDNA mutation. Our data demonstrates the feasibility of performing molecular studies using the free DNA present in the ductal fluid, while the intact cells can be used for cytologic studies.


International Journal of Cancer | 2001

Peripheral‐type benzodiazepine receptor levels correlate with the ability of human breast cancer MDA‐MB‐231 cell line to grow in scid mice

Matthew Hardwick; Janice D. Rone; Zeqiu Han; Bassem R. Haddad; Vassilios Papadopoulos

MDA‐MB‐231 (MDA‐231) human breast cancer cells have a high proliferation rate, lack the estrogen receptor, express the intermediate filament vimentin, the hyaluronan receptor CD44, and are able to form tumors in nude mice. The MDA‐231 cell line has been used in our laboratory to examine the role of the peripheral‐type benzodiazepine receptor (PBR) in the progression of cancer. During these studies 2 populations of MDA‐231 cells were subcloned based on the levels of PBR. The subclones proliferated at approximately the same rate, lacked the estrogen receptor, expressed vimentin and CD44, and had the same in vitro chemoinvasive and chemotactic potential. Both restriction fragment length polymorphism and comparative genomic hybridization analyses of genomic DNA from these cells indicated that both subclones are of the same genetic lineage. Only the subclone with high PBR levels, however, was able to form tumors when injected in SCID mice. These data suggest that the ability of MDA‐231 cells to form tumors in vivo may depend on the amount of PBR present in the cells.

Collaboration


Dive into the Bassem R. Haddad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janice D. Rone

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Iglenir João Cavalli

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claude Bendavid

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Vassilios Papadopoulos

McGill University Health Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge