Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bastian Salewsky is active.

Publication


Featured researches published by Bastian Salewsky.


PLOS Genetics | 2012

DNA Damage in Nijmegen Breakage Syndrome Cells Leads to PARP Hyperactivation and Increased Oxidative Stress

Harald Krenzlin; Ilja Demuth; Bastian Salewsky; Petra Wessendorf; Kathrin Weidele; Alexander Bürkle

Nijmegen Breakage Syndrome (NBS), an autosomal recessive genetic instability syndrome, is caused by hypomorphic mutation of the NBN gene, which codes for the protein nibrin. Nibrin is an integral member of the MRE11/RAD50/NBN (MRN) complex essential for processing DNA double-strand breaks. Cardinal features of NBS are immunodeficiency and an extremely high incidence of hematological malignancies. Recent studies in conditional null mutant mice have indicated disturbances in redox homeostasis due to impaired DSB processing. Clearly this could contribute to DNA damage, chromosomal instability, and cancer occurrence. Here we show, in the complete absence of nibrin in null mutant mouse cells, high levels of reactive oxygen species several hours after exposure to a mutagen. We show further that NBS patient cells, which unlike mouse null mutant cells have a truncated nibrin protein, also have high levels of reactive oxygen after DNA damage and that this increased oxidative stress is caused by depletion of NAD+ due to hyperactivation of the strand-break sensor, Poly(ADP-ribose) polymerase. Both hyperactivation of Poly(ADP-ribose) polymerase and increased ROS levels were reversed by use of a specific Poly(ADP-ribose) polymerase inhibitor. The extremely high incidence of malignancy among NBS patients is the result of the combination of a primary DSB repair deficiency with secondary oxidative DNA damage.


Human Molecular Genetics | 2012

The nuclease hSNM1B/Apollo is linked to the Fanconi Anemia Pathway via its Interaction with FANCP/SLX4

Bastian Salewsky; Maren Schmiester; Detlev Schindler; Ilja Demuth

The recessive genetic disorder Fanconi anemia (FA) is clinically characterized by congenital defects, bone marrow failure and an increased incidence of cancer. Cells derived from FA patients exhibit hypersensitivity to DNA interstrand crosslink (ICL)-inducing agents. We have earlier reported a similar cellular phenotype for human cells depleted of hSNM1B/Apollo (siRNA). In fact, hSNM1B/Apollo has a dual role in the DNA damage response and in generation and maintenance of telomeres, the latter function involving interaction with the shelterin protein TRF2. Here we find that ectopically expressed hSNM1B/Apollo co-immunoprecipitates with SLX4, a protein recently identified as a new FA protein, FANCP, and known to interact with several structure-specific nucleases. As shown by immunofluorescence analysis, FANCP/SLX4 depletion (siRNA) resulted in a significant reduction of hSNM1B/Apollo nuclear foci, supporting the functional relevance of this new protein interaction. Interestingly, as an additional consequence of FANCP/SLX4 depletion, we found a reduction of cellular TRF2, in line with its telomere-related function. Finally, analysis of human cells following double knockdown of hSNM1B/Apollo and FANCP/SLX4 indicated that they function epistatically. These findings further substantiate the role of hSNM1B/Apollo in a downstream step of the FA pathway during the repair of DNA ICLs.


The American Journal of Clinical Nutrition | 2016

Leukocyte telomere length is related to appendicular lean mass: cross-sectional data from the Berlin Aging Study II (BASE-II)

Antje Meyer; Bastian Salewsky; Dominik Spira; Elisabeth Steinhagen-Thiessen; Kristina Norman; Ilja Demuth

BACKGROUND Age-related progressive loss of muscle mass is an increasing problem in our aging society, affecting physical ability, risk of falls, and need for health care. Telomere length has been recognized as a marker of biological age on the population level. The relation between muscle mass in advanced age and telomere length, however, has rarely been examined. OBJECTIVE We evaluated the relation between appendicular lean mass (ALM) and relative leukocyte telomere length (rLTL) in 1398 participants of the Berlin Aging Study II (mean ± SD age: 68.2 ± 3.7 y; 49.6% men). DESIGN rLTL was determined by real-time polymerase chain reaction. Lean mass was estimated by dual X-ray absorptiometry and examined as leg lean mass (LLM), ALM, and the ratio of ALM to body mass index (ALMBMI). RESULTS Weak, but highly significant (P < 0.001), correlations of rLTL with ALM (r = 0.248), ALMBMI (r = 0.254), and LLM (r = 0.263) were found. In the fully adjusted model that included age, BMI, low-grade inflammation, lifestyle factors, and morbidities as potential confounders, rLTL was associated with ALM (β = 1.11, SEM = 0.46, P = 0.017), LLM (β = 1.20, SEM = 0.36, P = 0.001), and ALMBMI (β = 0.04, SEM = 0.02, P = 0.013) in men and with LLM in women (β = 0.78, SEM = 0.35, P = 0.026). CONCLUSIONS Our results suggest that short telomeres may be a risk factor for lower ALM, particularly for low LLM. To confirm the association between telomere attrition and loss of LLM and ALMBMI, which are highly relevant for physical ability, further research in a longitudinal context is needed. The medical portion of this trial was registered in the German Clinical Trials Registry (http://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do?navigationId=start) as DRKS00009277.


PLOS ONE | 2015

Sports and Exercise at Different Ages and Leukocyte Telomere Length in Later Life – Data from the Berlin Aging Study II (BASE-II)

Denise Saßenroth; Antje S. Meyer; Bastian Salewsky; Martin Kroh; Kristina Norman; Elisabeth Steinhagen-Thiessen; Ilja Demuth

Physical activity and sports have repeatedly been reported to be associated with telomere length. We studied the association of different types of sports across different stages of life on relative leukocyte telomere length (rLTL) in advanced age.815 participants (397 men) from the Berlin Aging Study II aged over 61 years were included in the analysis. rLTL was measured by real time PCR and physical activity was determined retrospectively by questionnaire, assessing type and duration of sports in the past as well as currently. Five separate multiple linear regression models adjusted for various control variables were performed. 67.3% of participants exercised currently, whereas 19.4% performed sports only between the age of 20 and 30. rLTL was higher in subjects who stated to exercise currently (N = 456), and in subjects who engaged in endurance (N = 138) or intensive activity sports (N = 32). Current physical activity was positively associated with rLTL in the risk factor adjusted regression model (β = 0.26, p < 0.001) and practicing sports for a minimum of 10 years preceding the assessment had a significant effect on rLTL (β = 0.39, p = 0.011). The highest impact was seen for intensive activity sports (β = 0.79, p < 0.001) and physical activity since at least 42 years (β = 0.47, p = 0.001). However, physical activity only between 20 and 30 years of age did not affect rLTL in old age when compared to no sports at all (β = -0.16, p = 0.21). Physical activity is clearly associated with longer rLTL. The effect is seen with longer periods of physical activity (at least 10 years), with intensive sports activities having the greatest impact on rLTL. Our data suggest that regular physical activity for at least 10 years is necessary to achieve a sustained effect on rLTL.


Nucleus | 2010

Dosage effect of zero to three functional LBR-genes in vivo and in vitro.

Sophia Gravemann; Nele Schnipper; Hannes Meyer; Amparo Vayá; Malgorzata J.M. Nowaczyk; Anna Rajab; Wolf-Karsten Hofmann; Bastian Salewsky; Holger Tönnies; Heidemarie Neitzel; H.H. Stassen; Karl Sperling; Katrin Hoffmann

The Lamin B receptor (LBR) is a pivotal architectural protein in the nuclear envelope. Mutations in the Lamin B receptor lead to nuclear hyposegmentation (Pelger-Huët anomaly). We have exactly quantified the nuclear lobulation in neutrophils from individuals with 0, 1, 2 and 3 functional copies of the lamin B receptor gene and analyzed the effect of different mutation types. Our data demonstrate that there is a highly significant gene-dosage effect between the gene copy number and the nuclear segmentation index of neutrophils. This finding is paralleled by a dose-dependent increase in LBR protein and staining intensity of the nuclear membrane in corresponding lymphoblastoid cell lines, which demonstrates a significant correlation on the protein level as well. We further show that LBR expression continually increases during granulopoiesis in vitro from human precursor cells with ovoid nuclei to multi-segmented neutrophil nuclei 11 days later, indicating relevance for regular human granulopoiesis. Altogether, LBR is a unique model that will allow the systematic study of gene-dosage effects and of modifying endogeneous and exogeneous factors on granulopoiesis.


Molecular Therapy | 2016

Directed Alternative Splicing in Nijmegen Breakage Syndrome: Proof of Principle Concerning Its Therapeutical Application

Bastian Salewsky; Gabriele Hildebrand; Susanne Rothe; Ann Christin Parplys; Janina Radszewski; Moritz Kieslich; Petra Wessendorf; Harald Krenzlin; Kerstin Borgmann; André Nussenzweig; Karl Sperling

Over 90% of patients with Nijmegen breakage syndrome (NBS), a hereditary cancer disorder, are homoallelic for a 5 bp deletion in the NBN gene involved in the cellular response to DNA damage. This hypomorphic mutation leads to a carboxy-terminal protein fragment, p70-nibrin, with some residual function. Average age at malignancy, typically lymphoma, is 9.7 years. NBS patients are hypersensitive to chemotherapeutic and radiotherapeutic treatments, thus prevention of cancer development is of particular importance. Expression of an internally deleted NBN protein, p80-nibrin, has been previously shown to be associated with a milder cellular phenotype and absence of cancer in a 62-year-old NBS patient. Here we show that cells from this patient, unlike other NBS patients, have DNA replication and origin firing rates comparable to control cells. We used here antisense oligonucleotides to enforce alternative splicing in NBS patient cells and efficiently generate the same internally deleted p80-nibrin protein. Injecting the same antisense sequences as morpholino oligomers (VivoMorpholinos) into the tail vein of a humanized NBS murine mouse model also led to efficient alternative splicing in vivo. Thus, proof of principle for the use of antisense oligonucleotides as a potential cancer prophylaxis has been demonstrated.


European Journal of Human Genetics | 2015

Severe hypertriglyceridemia in a patient heterozygous for a lipoprotein lipase gene allele with two novel missense variants.

Ursula Kassner; Bastian Salewsky; Marion Wühle-Demuth; Istvan Andras Szijarto; Thomas Grenkowitz; Priska Binner; Winfried März; Elisabeth Steinhagen-Thiessen; Ilja Demuth

Rare monogenic hyperchylomicronemia is caused by loss-of-function mutations in genes involved in the catabolism of triglyceride-rich lipoproteins, including the lipoprotein lipase gene, LPL. Clinical hallmarks of this condition are eruptive xanthomas, recurrent pancreatitis and abdominal pain. Patients with LPL deficiency and severe or recurrent pancreatitis are eligible for the first gene therapy treatment approved by the European Union. Therefore the precise molecular diagnosis of familial hyperchylomicronemia may affect treatment decisions. We present a 57-year-old male patient with excessive hypertriglyceridemia despite intensive lipid-lowering therapy. Abdominal sonography showed signs of chronic pancreatitis. Direct DNA sequencing and cloning revealed two novel missense variants, c.1302A>T and c.1306G>A, in exon 8 of the LPL gene coexisting on the same allele. The variants result in the amino-acid exchanges p.(Lys434Asn) and p.(Gly436Arg). They are located in the carboxy-terminal domain of lipoprotein lipase that interacts with the glycosylphosphatidylinositol-anchored HDL-binding protein (GPIHBP1) and are likely of functional relevance. No further relevant mutations were found by direct sequencing of the genes for APOA5, APOC2, LMF1 and GPIHBP1. We conclude that heterozygosity for damaging mutations of LPL may be sufficient to produce severe hypertriglyceridemia and that chylomicronemia may be transmitted in a dominant manner, at least in some families.


Gene | 2013

Nijmegen breakage syndrome: The clearance pathway for mutant nibrin protein is allele specific

Bastian Salewsky; Petra Wessendorf; Daniel Hirsch; Harald Krenzlin

The autosomal recessive disorder Nijmegen breakage syndrome (NBS) is caused by mutations in the NBN gene which codes for the protein nibrin (NBS1; p95). In the majority of cases, a 5bp deletion, a founder mutation, leads to a hypomorphic 70kD protein, p70-nibrin, after alternative initiation of translation. Protein levels are of relevance for the clinical course of the disease, particularly with regard to malignancy. Here, mechanisms and efficiency of mutant protein clearance were examined in order to establish whether these have an impact on nibrin abundance. Cell lines from NBS patients and retroviral transductants were treated with proteasome and lysosome inhibitors and examined by semi-quantitative immunoblotting for p70-nibrin and p95-nibrin levels. The results show that p70-nibrin is degraded by the proteasome with varying efficiency in cell lines from different NBS patients leading to lower or higher steady state levels of this partially active protein fragment. In contrast, a previously described NBN missense mutation, which disturbs protein folding due to the substitution of a critical arginine by tryptophan, was found to be cleared by lysosomal microautophagy leading also to lower cellular levels. The data show that truncated nibrin and misfolded nibrin have different clearance pathways.


Archive | 2016

Original ArticleDirected Alternative Splicing in Nijmegen Breakage Syndrome: Proof of Principle Concerning Its Therapeutical Application

Bastian Salewsky; Gabriele Hildebrand; Susanne Rothe; Ann Christin Parplys; Janina Radszewski; Moritz Kieslich; Petra Wessendorf; Harald Krenzlin; Kerstin Borgmann; André Nussenzweig; Karl Sperling; Martin Digweed

Over 90% of patients with Nijmegen breakage syndrome (NBS), a hereditary cancer disorder, are homoallelic for a 5 bp deletion in the NBN gene involved in the cellular response to DNA damage. This hypomorphic mutation leads to a carboxy-terminal protein fragment, p70-nibrin, with some residual function. Average age at malignancy, typically lymphoma, is 9.7 years. NBS patients are hypersensitive to chemotherapeutic and radiotherapeutic treatments, thus prevention of cancer development is of particular importance. Expression of an internally deleted NBN protein, p80-nibrin, has been previously shown to be associated with a milder cellular phenotype and absence of cancer in a 62-year-old NBS patient. Here we show that cells from this patient, unlike other NBS patients, have DNA replication and origin firing rates comparable to control cells. We used here antisense oligonucleotides to enforce alternative splicing in NBS patient cells and efficiently generate the same internally deleted p80-nibrin protein. Injecting the same antisense sequences as morpholino oligomers (VivoMorpholinos) into the tail vein of a humanized NBS murine mouse model also led to efficient alternative splicing in vivo. Thus, proof of principle for the use of antisense oligonucleotides as a potential cancer prophylaxis has been demonstrated.


DNA Repair | 2018

The hSNM1B/Apollo variant rs11552449 is associated with cellular sensitivity towards mitomycin C and ionizing radiation

Sarah Herwest; Carolin Albers; Maren Schmiester; Bastian Salewsky; Werner Hopfenmüller; Antje S. Meyer; Lars Bertram; Ilja Demuth

The polymorphism rs11552449 (c.181C > T, p.His61Tyr) in the hSNM1B/Apollo gene has been repeatedly shown to be associated with an increased risk for breast cancer. The aim of the current study was to investigate the association between rs11552449 and the degree of cellular sensitivity to mitomycin C (MMC) and ionizing radiation (IR). A total of 69 lymphoblastoid cell lines (LCLs) from generally healthy donors were tested for their sensitivity towards MMC and IR in growth inhibition experiments. LCLs heterozygous for rs11552449 were significantly more sensitive to MMC and IR than homozygous cells with the CC genotype (p < 0.05 and p < 0.01 for MMC and IR, respectively) and in the case of MMC also for the TT genotype (p < 0.01). Interestingly, heterozygous CT cells expressed significantly more full length hSNM1B/Apollo mRNA than cells with the homozygous CC (p < 0.0001) or TT genotypes (p < 0.00001). Thus, the observed higher sensitivity of cell lines heterozygous for rs11552449 towards MMC and IR may be a consequence of differential expression of hSNM1B/Apollo associated with rs11552449, a feature which has not been ascribed to this polymorphism before. Interestingly, relative leukocyte telomere length (rLTL) analyzed in a subset of these cells (N = 62) and in leukocytes of N = 1710 Berlin Aging Study II (BASE-II) participants was not associated with rs11552449. The results suggest that hSNM1B/Apollo is causal for the repeatedly reported association between rs11552449 and breast cancer. These results pave the way for further research regarding the clinical impact of rs11552449, e.g. on the clinical outcome of cancer therapy with DNA interstrand crosslinking agents and IR.

Collaboration


Dive into the Bastian Salewsky's collaboration.

Researchain Logo
Decentralizing Knowledge