Bastian Thaa
Free University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bastian Thaa.
Biochemical Journal | 2010
Stephanie Engel; Silvia Scolari; Bastian Thaa; Nils Krebs; Thomas Korte; Andreas Herrmann; Michael Veit
It has been supposed that the HA (haemagglutinin) of influenza virus must be recruited to membrane rafts to perform its function in membrane fusion and virus budding. In the present study, we aimed at substantiating this association in living cells by biophysical methods. To this end, we fused the cyan fluorescent protein Cer (Cerulean) to the cytoplasmic tail of HA. Upon expression in CHO (Chinese-hamster ovary) cells HA-Cer was glycosylated and transported to the plasma membrane in a similar manner to authentic HA. We measured FLIM-FRET (Förster resonance energy transfer by fluorescence lifetime imaging microscopy) and showed strong association of HA-Cer with Myr-Pal-YFP (myristoylated and palmitoylated peptide fused to yellow fluorescent protein), an established marker for rafts of the inner leaflet of the plasma membrane. Clustering was significantly reduced when rafts were disintegrated by cholesterol extraction and when the known raft-targeting signals of HA, the palmitoylation sites and amino acids in its transmembrane region, were removed. FRAP (fluorescence recovery after photobleaching) showed that removal of raft-targeting signals moderately increased the mobility of HA in the plasma membrane, indicating that the signals influence access of HA to slowly diffusing rafts. However, Myr-Pal-YFP exhibited a much faster mobility compared with HA-Cer, demonstrating that HA and the raft marker do not diffuse together in a stable raft complex for long periods of time.
Advances in Virology | 2011
Michael Veit; Bastian Thaa
Assembly and budding of influenza virus proceeds in the viral budozone, a domain in the plasma membrane with characteristics of cholesterol/sphingolipid-rich membrane rafts. The viral transmembrane glycoproteins hemagglutinin (HA) and neuraminidase (NA) are intrinsically targeted to these domains, while M2 is seemingly targeted to the edge of the budozone. Virus assembly is orchestrated by the matrix protein M1, binding to all viral components and the membrane. Budding progresses by protein- and lipid-mediated membrane bending and particle scission probably mediated by M2. Here, we summarize the experimental evidence for this model with emphasis on the raft-targeting features of HA, NA, and M2 and review the functional importance of raft domains for viral protein transport, assembly and budding, environmental stability, and membrane fusion.
Biochemical Journal | 2011
Bastian Thaa; Ilya Levental; Andreas Herrmann; Michael Veit
The influenza virus transmembrane protein M2 is a proton channel, but also plays a role in the scission of nascent virus particles from the plasma membrane. An amphiphilic helix in the CT (cytoplasmic tail) of M2 is supposed to insert into the lipid bilayer, thereby inducing curvature. Palmitoylation of the helix and binding to cholesterol via putative CRAC (cholesterol recognition/interaction amino acid consensus) motifs are believed to target M2 to the edge of rafts, the viral-budding site. In the present study, we tested pre-conditions of this model, i.e. that the CT interacts with membranes, and that acylation and cholesterol binding affect targeting of M2. M2-CT, purified as a glutathione transferase fusion protein, associated with [3H]photocholesterol and with liposomes. Mutation of tyrosine residues in the CRAC motifs prevented [(3)H]photocholesterol labelling and reduced liposome binding. M2-CT fused to the yellow fluorescent protein localized to the Golgi in transfected cells; membrane targeting was dependent on CRAC and (to a lesser extent) on palmitoylation. Preparation of giant plasma membrane vesicles from cells expressing full-length M2-GFP (green fluorescent protein) showed that the protein is partly present in the raft domain. Raft targeting required palmitoylation, but not the CRAC motifs. Thus palmitoylation and cholesterol binding differentially affect the intrinsic membrane binding of the amphiphilic helix.
Virology | 2009
Bastian Thaa; Andreas Herrmann; Michael Veit
The matrix protein M1, the organizer of assembly of influenza virus, interacts with other virus components and with cellular membranes. It has been proposed that M1 binding to lipids is mediated by its polybasic region, but this could hitherto not been investigated in vivo since M1 accumulates in the nucleus of transfected cells. We have equipped M1 with nuclear export signals and showed that the constructs are bound to cellular membranes. Exchange of the complete polybasic region and of further hydrophobic amino acids in its vicinity did not prevent association of M1 with membranes. We therefore suppose that M1 probably interacts with membranes via multiple binding sites.
PLOS ONE | 2013
Bastian Thaa; Balaji Chandrasekhar Sinhadri; Claudia Tielesch; Eberhard Krause; Michael Veit
Porcine reproductive and respiratory syndrome virus (PRRSV) is the major pathogen in the pig industry. Variability of the antigens and persistence are the biggest challenges for successful control and elimination of the disease. GP5, the major glycoprotein of PRRSV, is considered an important target of neutralizing antibodies, which however appear only late in infection. This was attributed to the presence of a “decoy epitope” located near a hypervariable region of GP5. This region also harbors the predicted signal peptide cleavage sites and (dependent on the virus strain) a variable number of potential N-glycosylation sites. Molecular processing of GP5 has not been addressed experimentally so far: whether and where the signal peptide is cleaved and (as a consequence) whether the “decoy epitope” is present in virus particles. We show that the signal peptide of GP5 from the American type 2 reference strain VR-2332 is cleaved, both during in vitro translation in the presence of microsomes and in transfected cells. This was found to be independent of neighboring glycosylation sites and occurred in a variety of porcine cells for GP5 sequences derived from various type 2 strains. The exact signal peptide cleavage site was elucidated by mass spectrometry of virus-derived and recombinant GP5. The results revealed that the signal peptide of GP5 is cleaved at two sites. As a result, a mixture of GP5 proteins exists in virus particles, some of which still contain the “decoy epitope” sequence. Heterogeneity was also observed for the use of glycosylation sites in the hypervariable region. Lastly, GP5 mutants were engineered where one of the signal peptide cleavage sites was blocked. Wildtype GP5 exhibited exactly the same SDS-PAGE mobility as the mutant that is cleavable at site 2 only. This indicates that the overwhelming majority of all GP5 molecules does not contain the “decoy epitope”.
Journal of Virology | 2010
Bastian Thaa; Andreas Herrmann; Michael Veit
ABSTRACT The hemagglutinin (HA) of influenza virus organizes the virus bud zone, a domain of the plasma membrane enriched in raft lipids. Using fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET), a technique that detects close colocalization of fluorescent proteins in transfected cells, we show that the viral proton channel M2 clusters with HA but not with a marker for inner leaflet rafts. The FRET signal between M2 and HA depends on the raft-targeting signals in HA and on an intact actin cytoskeleton. We conclude that M2 contains an intrinsic signal that targets the protein to the viral bud zone, which is organized by raft-associated HA and by cortical actin.
Virus Research | 2014
Michael Veit; Anna Karolina Matczuk; Balaji Chandrasekhar Sinhadri; Eberhard Krause; Bastian Thaa
Abstract Arteriviruses, such as equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV), are important pathogens in veterinary medicine. Despite their limited genome size, arterivirus particles contain a multitude of membrane proteins, the Gp5/M and the Gp2/3/4 complex, the small and hydrophobic E protein and the ORF5a protein. Their function during virus entry and budding is understood only incompletely. We summarize current knowledge of their primary structure, membrane topology, (co-translational) processing and intracellular targeting to membranes of the exocytic pathway, which are the budding site. We profoundly describe experimental data that led to widely believed conceptions about the function of these proteins and also report new results about processing steps for each glycoprotein. Further, we depict the location and characteristics of epitopes in the membrane proteins since the late appearance of neutralizing antibodies may lead to persistence, a characteristic hallmark of arterivirus infection. Some molecular features of the arteriviral proteins are rare or even unique from a cell biological point of view, particularly the prevention of signal peptide cleavage by co-translational glycosylation, discovered in EAV-Gp3, and the efficient use of overlapping sequons for glycosylation. This article reviews the molecular mechanisms of these cellular processes. Based on this, we present hypotheses on the structure and variability of arteriviral membrane proteins and their role during virus entry and budding.
Journal of General Virology | 2009
Bastian Thaa; Aleksander Kabatek; Jessika C. Zevenhoven-Dobbe; Eric J. Snijder; Andreas Herrmann; Michael Veit
The envelope of equine arteritis virus (EAV) contains two glycoprotein complexes (GP2b/GP3/GP4 and GP5/M) and the small, non-glycosylated E protein. As E is essential for the production of infectious progeny but dispensable for assembly and release of virus-like particles, it probably mediates virus entry into cells, putatively in concert with the GP2b/GP3/GP4 complex. The E protein contains a central hydrophobic domain and a conserved potential site for N-terminal myristoylation, a hydrophobic modification usually pivotal for membrane targeting of the modified protein. Here, it was shown by radiolabelling that E is myristoylated at glycine-2, both in transfected cells as a fusion protein with yellow fluorescent protein (YFP) and in virus particles. Biochemical fractionation revealed that E-YFP with an inactivated acylation site was still completely membrane-bound, indicating that the putative transmembrane domain of E mediates membrane targeting. Confocal microscopy showed that both myristoylated and non-myristoylated E-YFP were localized to the endoplasmic reticulum and Golgi complex, the membranes from which EAV buds. The presence of a myristoylation inhibitor during replication of EAV, whilst completely blocking E acylation, reduced virus titres by 1.5 log(10). Similarly, a mutant EAV with non-myristoylatable E grew to a titre five- to sevenfold lower than that of the wild-type virus and exhibited a reduced plaque size. Western blotting of cell-culture supernatants showed that N and M, the major structural proteins of EAV, are released in similar amounts by cells transfected with wild-type and mutant genomes. Thus, E myristoylation is not required for budding of particles and probably has a function during virus entry.
Biochimica et Biophysica Acta | 2014
Franz-Josef Schmitt; Bastian Thaa; Cornelia Junghans; Marco Vitali; Michael Veit; Thomas Friedrich
The determination of pH in the cell cytoplasm or in intracellular organelles is of high relevance in cell biology. Also in plant cells, organelle-specific pH monitoring with high spatial precision is an important issue, since e.g. ΔpH across thylakoid membranes is the driving force for ATP synthesis critically regulating photoprotective mechanisms like non-photochemical quenching (NPQ) of chlorophyll (Chl) fluorescence or the xanthophyll cycle. In animal cells, pH determination can serve to monitor proton permeation across membranes and, therefore, to assay the efficiency of drugs against proton-selective transporters or ion channels. In this work, we demonstrate the applicability of the pH-sensitive GFP derivative (eGFP-pHsens, originally termed deGFP4 by Hanson et al. [1]) for pH measurements using fluorescence lifetime imaging microscopy (FLIM) with excellent precision. eGFP-pHsens was either expressed in the cytoplasm or targeted to the mitochondria of Chinese hamster ovary (CHO-K1) cells and applied here for monitoring activity of the M2 proton channel from influenza A virus. It is shown that the M2 protein confers high proton permeability of the plasma membrane upon expression in CHO-K1 cells resulting in rapid and strong changes of the intracellular pH upon pH changes of the extracellular medium. These pH changes are abolished in the presence of amantadine, a specific blocker of the M2 proton channel. These results were obtained using a novel multi-parameter FLIM setup that permits the simultaneous imaging of the fluorescence amplitude ratios and lifetimes of eGFP-pHsens enabling the quick and accurate pH determination with spatial resolution of 500 nm in two color channels with time resolution of below 100 ps. With FLIM, we also demonstrate the simultaneous determination of pH in the cytoplasm and mitochondria showing that the pH in the mitochondrial matrix is slightly higher (around 7.8) than that in the cytoplasm (about 7.0). The results obtained for CHO-K1 cells without M2 channels in comparison to M2-expressing cells show that the pH dynamics is determined by the specific H⁺ permeability of the membrane, the buffering of protons in the internal cell lumen and/or an outwardly directed proton pump activity that stabilizes the interior pH at a higher level than the external acidic pH. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Cellular Microbiology | 2013
Michael Veit; Stephanie Engel; Bastian Thaa; Silvia Scolari; Andreas Herrmann
Influenza virus is thought to assemble in raft domains of the plasma membrane, but many of the conclusions were based on (controversial) Triton extraction experiments. Here we review how sophisticated methods of fluorescence microscopy, such as FPALM, FRET and FRAP, contributed to our understanding of lipid domain association of the viral proteins HA and M2. The results are summarized in light of the current model for virus assembly and lipid domain organization. Finally, it is described how the signals that govern domain association in transfected cells affect replication of influenza virus.