Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bastian Welke is active.

Publication


Featured researches published by Bastian Welke.


Acta Biomaterialia | 2015

In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model.

Christina Rössig; Nina Angrisani; Patrick Helmecke; Silke Besdo; Jan-Marten Seitz; Bastian Welke; Nickolay Fedchenko; Heiko Kock; Janin Reifenrath

UNLABELLED The biocompatibility and the degradation behavior of the LAE442 magnesium-based intramedullary interlocked nailing system (IM-NS) was assessed in vivo in a comparative study (stainless austenitic steel 1.4441LA) for the first time. IM-NS was implanted into the right tibia (24-week investigation period; nails/screws diameter: 9 mm/3.5 mm, length: 130 mm/15-40 mm) of 10 adult sheep (LAE442, stainless steel, n=5 each group). Clinical and radiographic examinations, in vivo computed tomography (CT), ex vivo micro-computed tomography (μCT), mechanical and histological examinations and element analyses of alloying elements in inner organs were performed. The mechanical examinations (four-point bending) revealed a significant decrease of LAE442 implant stiffness, force at 0.2% offset yield point and maximum force. Periosteal (new bone formation) and endosteal (bone decline) located bone alterations occurred in both groups (LAE442 alloy more pronounced). Moderate gas formation was observed within the LAE442 alloy group. The CT-measured implant volume decreased slightly (not significant). Histologically a predominantly direct bone-to-implant interface existed within the LAE442 alloy group. Formation of a fibrous tissue capsule around the nail occurred in the steel group. Minor inflammatory infiltration was observed in the LAE442 alloy group. Significantly increased quantities of rare earth elements were detected in the LAE442 alloy group. μCT examination showed the beginning of corrosion in dependence of the surrounding tissue. After 24 weeks the local biocompatibility of LAE442 can be considered as suitable for a degradable implant material. STATEMENT OF SIGNIFICANCE An application oriented interlocked intramedullary nailing system in a comparative study (degradable magnesium-based LAE442 alloy vs. steel alloy) was examined in a sheep model for the first time. We focused in particular on the examination of implant degradation by means of (μ-)CT, mechanical properties (four-point bending), clinical compatibility, local bone reactions (X-ray and histology) and possible systemic toxicity (histology and element analyses of inner organs). A significant decrease of magnesium (LAE442 alloy) implant stiffness and maximum force occurred. Moderate not clinically relevant gas accumulation was determined. A predominantly direct bone-to-implant contact existed within the magnesium (LAE442 alloy) group compared to an indirect contact in the steel group. Rare earth element accumulation could be observed in inner organs but H&E staining was inconspicuous.


Journal of Biomechanics | 2013

Loads on the prosthesis–socket interface of above-knee amputees during normal gait: Validation of a multi-body simulation

Michael Schwarze; Christof Hurschler; Frank Seehaus; Simone Oehler; Bastian Welke

The treatment of above-knee amputees with a prosthesis based on a socket is currently considered the standard clinical treatment. Nevertheless there are few investigations on mechanical loading conditions on these devices under realistic circumstances. Further insight in this matter might improve the design of sockets for everyday application. The presented study investigates the loads acting on the socket-interface with a multi-body simulation (MBS). Aim of this study is to validate the quality of the applied MBS next to a direct measurement device. Therefore a custom strain gauge based force-moment sensor is integrated into the conventional socket-based prosthesis of six above-knee amputees. Each subject performs level-walking with kinematic and kinetic data being recorded in a gait laboratory. The data of the marker trajectories is processed in an inverse dynamics MBS where loads at the location of the sensor are determined. The comparison of both methods shows a good agreement of forces and moments and the simulation can be considered fully validated. RMSD is 4.7%BW for the forces and 27.0%BWM for the moments. The model will be used in further research to determine loads on the socket-prosthesis interface of above-knee amputees especially in high risk situations such as falling scenarios, where direct measurement with amputees is not possible for ethical reasons.


SpringerPlus | 2013

Preliminary results in anterior cervical discectomy and fusion with an experimental bioabsorbable cage - clinical and radiological findings in an ovine animal model

Dorothea Daentzer; Thilo Floerkemeier; Ivonne Bartsch; Waseem Masalha; Bastian Welke; Christof Hurschler; Theresa Kauth; Daniel Kaltbeitzel; Christian Hopmann; Bernd Kujat; Katharina Kalla

BackgroundBioabsorbable implants are not widely used in spine surgery. This study investigated the clinical and radiological findings after anterior cervical discectomy and fusion (ACDF) in an ovine animal model with an experimental bioabsorbable cage consisting of magnesium and polymer (poly-ϵ-caprolactone, PCL) in comparison to a tricortical bone graft as the gold standard procedure.Materials and Methods24 full-grown sheep had ACDF of C3/4 and C5/6 with an experimental bioabsorbable implant (magnesium and PCL) in one level and an autologous tricortical bone graft in the second level. The sheep were divided into 4 groups (6 sheep each). After 3, 6, 12, or 24 weeks postoperatively, the cervical spines were harvested and conventional x-rays of each operated segment were conducted. The progress of interbody fusion was classified according to a three-point scoring system.ResultsThere were no operation related complications except for one intraoperative fracture of the anterior superior iliac spine and two cases of screw loosening and sinking, respectively. In particular, no vascular, neurologic, wound healing or infectious problems were observed. According to the time of follow-up, both interbody fusion devices showed similar behaviour with increasing intervertebral osseointegration and complete arthrodesis in 10 of 12 (83.3%) motion segments after 24 weeks.ConclusionsThe bioabsorbable magnesium-PCL cage used in this experimental animal study showed clinically no signs of incompatibility such as infectious or wound healing problems. The radiographic results regarding the osseointegration are comparable between the cage and the bone graft group.


Journal of Orthopaedic Research | 2013

Multi-body simulation of various falling scenarios for determining resulting loads at the prosthesis interface of transfemoral amputees with osseointegrated fixation

Bastian Welke; Michael Schwarze; Christof Hurschler; Tilman Calliess; Frank Seehaus

Conventionally, transfemoral amputees are treated with a shaft prosthesis fitted over the residual limb. To improve the quality of life of such patients, in particular those with complications relating to conventional attachment (e.g., skin irritation, stump ulcers, and poor motor‐control with short stumps), osseointegrated prosthesis fixation implants have been developed and implanted in a limited population of patients. To assess possible damage to the implant/prosthesis during falling scenarios, the loads in high‐risk situations were estimated using a multi‐body simulation of motion. Five falling scenarios were identified and performed by healthy volunteer wearing safety equipment. Kinematic data and ground reaction forces were captured as input for the inverse‐dynamics‐based simulations, from which the forces and moments at a typical implant‐prosthesis interface location were computed. The estimated peak loads in all five scenarios were of a magnitude that could lead to bone fracture. The largest peak force observed was 3274 ± 519 N, with an associated resultant moment of 176 ± 55 Nm on the prosthesis‐implant interface. A typical femur is prone to fracture under this load, thus illustrating the need for a safety‐release element in osseointegrated prosthesis fixation.


Biomedizinische Technik | 2012

Mechanical testing of an absorbable hybrid fusion cage for the cervical spine.

Theresa Kauth; Christian Hopmann; Bernd Kujat; Friedrich W. Bach; Bastian Welke; Christof Hurschler; Katharina Kalla; Dorothea Daentzer

Abstract Conventional fusion devices (“cages”) are often used to join two vertebrae of the human spine and generally remain in the body for a lifetime and can theoretically lead to any complications. Therefore, an absorbable hybrid fusion cage consisting of a magnesium skeleton infiltrated with an absorbable polymer [poly-ε-caprolactone (PCL)] has been developed. The primary objective of the cage is to ensure an adequate stiffness of the disc space directly after the operation and to encourage the ingrowth of the new bone tissue to secure long life stability. Once a sufficiently rigid bone connection is formed, the implant should be absorbed. The purpose of this first study on the new absorbable fusion cage was to investigate the mechanical properties in vitro. Tensile tests were performed with tensile specimens type 1BA according to DIN EN ISO 527 made of PCL foamed using controlled expansion of saturated polymers (CESP). Furthermore, cyclic compression tests and compression tests with steady movement were performed with different designs of the new cage. Compression tests were also performed with vertebral endplates of ovine cadaveric spines. Foaming of PCL resulted in a modulus of elasticity of 135 MPa, which is approximately one third of unfoamed PCL. The results indicate that the initial compression strength of the implants should be adequate for the implantation in the cervical spine.


European Spine Journal | 2016

In vitro investigation of a new dynamic cervical implant: comparison to spinal fusion and total disc replacement.

Bastian Welke; Michael Schwarze; Christof Hurschler; Thorsten Book; Stephan Magdu; Dorothea Daentzer

Purpose and methodsFor the treatment of degenerative disc diseases of the cervical spine, anterior cervical discectomy and fusion (ACDF) still represents the standard procedure. However, long term clinical studies have shown a higher incidence of pathologies in the adjacent segments. As an alternative to spinal fusion, cervical total disc replacement (cTDR) or dynamically implants were increasingly used. This in vitro study analyzed the kinematics and intradiscal pressures in seven multi-segmental human cervical spine using hybrid multidirectional test method. The aim of our study was to compare the intact condition with a single-level dynamic stabilization with DCI®, with cTDR (activC®) and with simulated ACDF (CeSPACE® cage and CASPAR plate).ResultsNo significant changes in the kinematics and pressures were observed in all segments after arthroplasty. The DCI® significantly decreased the motion of the treated segment in flexion/extension and lateral bending with some remaining residual mobility. Thereby the motion of the upper segment was increased significantly in flexion/extension. No significant changes of the intradiscal pressures were observed. With simulated fusion the motion of the indexed level was significantly decreased in flexion/extension and axial rotation with the greatest changes in the adjacent levels and the highest pressures.ConclusionBased on our biomechanical study the DCI® can pose an alternative to fusion, which has a lesser effect on adjacent levels. This might reduce the risk of long-term degeneration in those levels. In particular, the facet joint arthritis and kyphotic deformity, as a contraindication to the arthroplasty, could be a clinical application of the dynamic implant.


Clinical Biomechanics | 2016

The effect of the arthroscopic augmentation of the subscapularis tendon on shoulder instability and range of motion: A biomechanical study

Steffen Schröter; M. Krämer; Bastian Welke; Christof Hurschler; R. Russo; M. Herbst; Ulrich Stöckle; Atesch Ateschrang; M. Maiotti

BACKGROUND Anterior shoulder dislocation is common. The treatment of recurrence with glenoid bone defect is still considered controversial. A new arthroscopic subscapularis augmentation has recently been described that functions to decrease the anterior translation of the humeral head. The purpose of the presented study was to examine the biomechanical effect on glenohumeral joint motion and stability. METHODS Eight fresh frozen cadaver shoulders were studied by use of a force guided industrial robot fitted with a six-component force-moment sensor to which the humerus was attached. The testing protocol includes measurement of glenohumeral translation in the anterior, anterior-inferior and inferior directions at 0°, 30° and 60° of glenohumeral abduction, respectively, with a passive humerus load of 30N in the testing direction. The maximum possible external rotation was measured at each abduction angle applying a moment of 1Nm. Each specimen was measured in a physiologic state, as well as after Bankart lesion with an anterior bone defect of 15-20% of the glenoid, after arthroscopic subscapularis augmentation and after Bankart repair. FINDINGS The arthroscopic subscapularis augmentation decreased the anterior and anterior-inferior translation. The Bankart repair did not restore the mechanical stability compared to the physiologic shoulder group. External rotation was decreased after arthroscopic subscapularis augmentation compared to the physiologic state, however, the limitation of external rotation was decreased at 60° abduction. INTERPRETATION The arthroscopic subscapularis augmentation investigated herein was observed to restore shoulder stability in an experimental model.


Biomedical Engineering Online | 2015

In vitro-analysis of kinematics and intradiscal pressures in cervical arthroplasty versus fusion – A biomechanical study in a sheep model with two semi-constrained prosthesis

Dorothea Daentzer; Bastian Welke; Christof Hurschler; Nathalie Husmann; Christina Jansen; Christian Flamme; Berna Richter

BackgroundAs an alternative technique to arthrodesis of the cervical spine, total disc replacement (TDR) has increasingly been used with the aim of restoration of the physiological function of the treated and adjacent motions segments. The purpose of this experimental study was to analyze the kinematics of the target level as well as of the adjacent segments, and to measure the pressures in the proximal and distal disc after arthrodesis as well as after arthroplasty with two different semi-constrained types of prosthesis.MethodsTwelve cadaveric ovine cervical spines underwent polysegmental (C2-5) multidirectional flexibility testing with a sensor-guided industrial serial robot. Additionally, pressures were recorded in the proximal and distal disc. The following three conditions were tested: (1) intact specimen, (2) single-level arthrodesis C3/4, (3) single-level TDR C3/4 using the Discover® in the first six specimens and the activ® C in the other six cadavers. Statistical analysis was performed for the total range of motion (ROM), the intervertebral ROM (iROM) and the intradiscal pressures (IDP) to compare both the three different conditions as well as the two disc prosthesis among each other.ResultsThe relative iROM in the target level was always lowered after fusion in the three directions of motion. In almost all cases, the relative iROM of the adjacent segments was almost always higher compared to the physiologic condition. After arthroplasty, we found increased relative iROM in the treated level in comparison to intact state in almost all cases, with relative iROM in the adjacent segments observed to be lower in almost all situations. The IDP in both adjacent discs always increased in flexion and extension after arthrodesis. In all but five cases, the IDP in each of the adjacent level was decreased below the values of the intact specimens after TDR. Overall, in none of the analyzed parameters were statistically significantly differences between both types of prostheses investigated.ConclusionThe results of this biomechanical study indicate that single-level implantation of semi-constrained TDR lead to a certain hypermobility in the treated segments with lowering the ROM in the adjacent levels in almost all situations.


Spine | 2014

Bioabsorbable Interbody Magnesium-polymer Cage: Degradation Kinetics, Biomechanical Stiffness, and Histological Findings From an Ovine Cervical Spine Fusion Model

Dorothea Daentzer; Elmar Willbold; Katharina Kalla; Ivonne Bartsch; Waseem Masalha; Maximiliane Hallbaum; Christof Hurschler; Theresa Kauth; Daniel Kaltbeitzel; Christian Hopmann; Bastian Welke

Study Design. An experimental study using a sheep cervical spine interbody fusion model. Objective. First, to compare anterior cervical discectomy and fusion of an experimental bioabsorbable cage consisting of a magnesium alloy and a polymer (poly-&egr;-caprolactone, PCL) with an autologous tricortical iliac crest bone graft. Second, to determine the degradation kinetics of the cage, assess the 2 fusion devices for biomechanical stability, and determine their histological characteristics. Summary of Background Data. Bioabsorbable cages are not routinely used in spine surgery at present, due to some undesirable effects such as cracks and foreign body reactions. This study involved the manufacture of a bioabsorbable cage from a magnesium alloy and the polymer PCL, which was then used as a device for anterior cervical discectomy and fusion in a sheep cervical spine fusion model. Methods. Twenty-four sheep had anterior cervical discectomy and fusion of C3–C4 and C5–C6 with an experimental bioabsorbable cage consisting of the magnesium alloy AZ31, which was infiltrated and covered with PCL at 1 level and with an autologous tricortical iliac crest bone graft at a second level. The sheep were divided into 4 groups. After 3, 6, 12, or 24 weeks postimplantation, the animals were killed and the cervical spines were harvested. The intervertebral spaces with the cage were investigated using &mgr;-computed tomographic images to calculate degradation kinetics. Stiffness of all monosegments was determined through biomechanical testing. Histological analysis was performed to evaluate fusion status and to detect any foreign body reactions. The results from both implants were compared. Results. The magnesium-PCL cage showed nonlinear degradation over time. Both implants demonstrated time-dependent increases in stability, with a significantly greater stiffness of the bone graft after 24 weeks in all directions of motion. Histologically, the cage showed no signs of fusion with progressive encapsulation over time. Conclusion. In comparison with the bone graft, the bioabsorbable cage showed inferior stiffness and fusion properties. Thus, further component modifications are necessary. Level of Evidence: N/A


Biomedical Engineering Online | 2013

Stiffness and ultimate load of osseointegrated prosthesis fixations in the upper and lower extremity

Bastian Welke; Christof Hurschler; Marie Föller; Michael Schwarze; Tilman Calliess

BackgroundTechniques for the skeletal attachment of amputation-prostheses have been developed over recent decades. This type of attachment has only been performed on a small number of patients. It poses various potential advantages compared to conventional treatment with a socket, but is also associated with an increased risk of bone or implant-bone interface fracture in the case of a fall. We therefore investigated the bending stiffness and ultimate bending moment of such devices implanted in human and synthetic bones.MethodsEight human specimens and 16 synthetic models of the proximal femora were implanted with lower extremity prostheses and eight human specimens and six synthetic humeri were implanted with upper extremity prostheses. They were dissected according to typical amputation levels and underwent loading in a material testing machine in a four-point bending setup. Bending stiffness, ultimate bending moment and fracture modes were determined in a load to failure experiment. Additionally, axial pull-out was performed on eight synthetic specimens of the lower extremity.ResultsMaximum bending moment of the synthetic femora was 160.6±27.5 Nm, the flexural rigidity of the synthetic femora was 189.0±22.6 Nm2. Maximum bending moment of the human femora was 100.4±38.5 Nm, and the flexural rigidity was 137.8±29.4 Nm2. The maximum bending moment of the six synthetic humeri was 104.9±19.0 Nm, and the flexural rigidity was 63.7±3.6 Nm2. For the human humeri the maximum bending moment was 36.7±11.0 Nm, and the flexural rigidity at was 43.7±10.5 Nm2. The maximum pull-out force for the eight synthetic femora was 3571±919 N.ConclusionSignificant differences were found between human and synthetic specimens of the lower and upper extremity regarding maximum bending moment, bending displacement and flexural rigidity. The results of this study are relevant with respect to previous finding regarding the load at the interfaces of osseointegrated prosthesis fixation devices and are crucial for the development of safety devices intended to protect the bone-implant interface from damaging loadings.

Collaboration


Dive into the Bastian Welke's collaboration.

Top Co-Authors

Avatar

Christof Hurschler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christof Hurschler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge