Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bastien Arnal is active.

Publication


Featured researches published by Bastien Arnal.


Journal of Biomedical Optics | 2013

Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography

Shaozhen Song; Zhihong Huang; Thu Mai Nguyen; Emily Y. Wong; Bastien Arnal; Matthew O'Donnell; Ruikang K. Wang

Abstract. We propose an integrated method combining low-frequency mechanics with optical imaging to map the shear modulus within the biological tissue. Induced shear wave propagating in tissue is tracked in space and time using phase-sensitive optical coherence tomography (PhS-OCT). Local estimates of the shear-wave speed obtained from tracking results can image the local shear modulus. A PhS-OCT system remotely records depth-resolved, dynamic mechanical waves at an equivalent frame rate of ∼47  kHz with the high spatial resolution. The proposed method was validated by examining tissue-mimicking phantoms made of agar and light scattering material. Results demonstrate that the shear wave imaging can accurately map the elastic moduli of these phantoms.


Optics Letters | 2014

Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography.

Thu-Mai Nguyen; Shaozhen Song; Bastien Arnal; Zhihong Huang; Matthew O’Donnell; Ruikang K. Wang

We report on the use of phase-sensitive optical coherence tomography (PhS-OCT) to detect and track temporal and spatial shear wave propagation within tissue, induced by ultrasound radiation force. Kilohertz-range shear waves are remotely generated in samples using focused ultrasound emission and their propagation is tracked using PhS-OCT. Cross-sectional maps of the local shear modulus are reconstructed from local estimates of shear wave speed in tissue-mimicking phantoms. We demonstrate the feasibility of combining ultrasound radiation force and PhS-OCT to perform high-resolution mapping of the shear modulus.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2011

Monitoring of thermal therapy based on shear modulus changes: II. Shear wave imaging of thermal lesions

Bastien Arnal; Mathieu Pernot; Mickael Tanter

The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is currently hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to a precise mapping of the lesion. HIFU treatment and monitoring were respectively performed using a confocal setup consisting of a 2.5-MHz single element transducer focused at 34 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Ultrasound-based strain imaging was combined with shear wave imaging on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created with pushing beams of 100 μs at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Thus, elasticity and strain mapping was achieved every 3 s, leading to real-time monitoring of the treatment. When thermal damage occurs, tissue stiffness was found to increase up to 4-fold and strain imaging showed strong shrinkages that blur the temperature information. We show that strain imaging elastograms are not easy to interpret for accurate lesion characterization, but SWI provides a quantitative mapping of the thermal lesion. Moreover, the concept of shear wave thermometry (SWT) developed in the companion paper allows mapping temperature with the same method. Combined SWT and shear wave imaging can map the lesion stiffening and temperature outside the lesion, which could be used to predict the eventual lesion growth by thermal dose calculation. Finally, SWI is shown to be robust to motion and reliable in vivo on sheep muscle.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2011

Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry

Bastien Arnal; Mathieu Pernot; Mickael Tanter

The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is today hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to the 2-D mapping of temperature changes during HIFU treatments. This new concept of shear wave thermometry is experimentally implemented here using conventional ultrasonic imaging probes. HIFU treatment and monitoring were, respectively, performed using a confocal setup consisting of a 2.5-MHz single-element transducer focused at 30 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Thermocouple measurements and ultrasound-based thermometry were used as a gold standard technique and were combined with SWI on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created using 100-μs pushing beams at 3 depths. The shear wave propagation was acquired at 17 000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Elasticity and temperature mapping was achieved every 3 s, leading to realtime monitoring of the treatment. Tissue stiffness was found to decrease in the focal zone for temperatures up to 43°C. Ultrasound-based temperature estimation was highly correlated to stiffness variation maps (r2 = 0.91 to 0.97). A reversible calibration phase of the changes of elasticity with temperature can be made locally using sighting shots. This calibration process allows for the derivation of temperature maps from shear wave imaging. Compared with conventional ultrasound-based approaches, shear wave thermometry is found to be much more robust to motion artifacts.


Journal of Biomedical Optics | 2014

Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography

Thu Mai Nguyen; Shaozhen Song; Bastien Arnal; Emily Y. Wong; Zhihong Huang; Ruikang K. Wang; Matthew O'Donnell

Abstract. Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12  dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2015

Real-time integrated photoacoustic and ultrasound (PAUS) imaging system to guide interventional procedures: ex vivo study

Chen Wei Wei; Thu Mai Nguyen; Jinjun Xia; Bastien Arnal; Emily Y. Wong; Ivan Pelivanov; Matthew O'Donnell

Because of depth-dependent light attenuation, bulky, low-repetition-rate lasers are usually used in most photoacoustic (PA) systems to provide sufficient pulse energies to image at depth within the body. However, integrating these lasers with real-time clinical ultrasound (US) scanners has been problematic because of their size and cost. In this paper, an integrated PA/US (PAUS) imaging system is presented operating at frame rates >30 Hz. By employing a portable, low-cost, low-pulse-energy (~2 mJ/pulse), high-repetition-rate (~1 kHz), 1053-nm laser, and a rotating galvo-mirror system enabling rapid laser beam scanning over the imaging area, the approach is demonstrated for potential applications requiring a few centimeters of penetration. In particular, we demonstrate here real-time (30 Hz frame rate) imaging (by combining multiple single-shot sub-images covering the scan region) of an 18-gauge needle inserted into a piece of chicken breast with subsequent delivery of an absorptive agent at more than 1-cm depth to mimic PAUS guidance of an interventional procedure. A signal-to-noise ratio of more than 35 dB is obtained for the needle in an imaging area 2.8 × 2.8 cm (depth × lateral). Higher frame rate operation is envisioned with an optimized scanning scheme.


ACS Nano | 2015

Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging.

Junwei Li; Bastien Arnal; Chen-Wei Wei; Jing Shang; Thu-Mai Nguyen; Matthew O’Donnell; Xiaohu Gao

Photoacoustic imaging has emerged as a highly promising tool to visualize molecular events with deep tissue penetration. Like most other modalities, however, image contrast under in vivo conditions is far from optimal due to background signals from tissue. Using iron oxide-gold core-shell nanoparticles, we have previously demonstrated the concept of magnetomotive photoacoustic (mmPA) imaging, which is capable of dramatically reducing the influence of background signals and producing high-contrast molecular images. Here, we report two significant advances toward clinical translation of this technology. First, we introduce a new class of compact, uniform, magneto-optically coupled core-shell nanoparticles, prepared through localized copolymerization of polypyrrole (PPy) on an iron oxide nanoparticle surface. The resulting iron oxide-PPy nanoparticles feature high colloidal stability and solve the photoinstability and small-scale synthesis problems previously encountered by the gold coating approach. In parallel, we have developed a new generation of mmPA featuring cyclic magnetic motion and ultrasound speckle tracking (USST), whose imaging capture frame rate is several hundred times faster than the photoacoustic speckle tracking (PAST) method we demonstrated previously. These advances enable robust artifact elimination caused by physiologic motions and demonstrate the application of the mmPA technology for in vivo sensitive tumor imaging.


Photoacoustics | 2015

Sono-photoacoustic imaging of gold nanoemulsions: Part I. Exposure thresholds

Bastien Arnal; Camilo Perez; Chen-Wei Wei; Jinjun Xia; Michael Lombardo; Ivan Pelivanov; Thomas J. Matula; Lilo D. Pozzo; Matthew O’Donnell

Integrating high contrast bubbles from ultrasound imaging with plasmonic absorbers from photoacoustic imaging is investigated. Nanoemulsion beads coated with gold nanopsheres (NEB-GNS) are excited with simultaneous light (transient heat at the GNSs) and ultrasound (rarefactional pressure) resulting in a phase transition achievable under different scenarios, enhancing laser-induced acoustic signals and enabling specific detection of nanoprobes at lower concentration. An automated platform allowed dual parameter scans of both pressure and laser fluence while recording broadband acoustic signals. Two types of NEB-GNS and individual GNS were investigated and showed the great potential of this technique to enhance photoacoustic/acoustic signals. The NEB-GNS size distribution influences vaporization thresholds which can be reached at both permissible ultrasound and light exposures at deep penetration and at low concentrations of targets. This technique, called sono-photoacoustics, has great potential for targeted molecular imaging and therapy using compact nanoprobes with potentially high-penetrability into tissue.


Optics Letters | 2014

Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results

Chen Wei Wei; Jinjun Xia; Michael Lombardo; Camilo Perez; Bastien Arnal; Kjersta Larson-Smith; Ivan Pelivanov; Thomas J. Matula; Lilo D. Pozzo; Matthew O'Donnell

Optically activated cavitation in a nanoemulsion contrast agent is proposed for therapeutic applications. With a 56°C boiling point perfluorohexane core and highly absorptive gold nanospheres at the oil-water interface, cavitation nuclei in the core can be efficiently induced with a laser fluence below medical safety limits (70 mJ/cm2 at 1064 nm). This agent is also sensitive to ultrasound (US) exposure and can induce inertial cavitation at a pressure within the medical diagnostic range. Images from a high-speed camera demonstrate bubble formation in these nanoemulsions. The potential of using this contrast agent for blood clot disruption is demonstrated in an in vitro study. The possibility of simultaneous laser and US excitation to reduce the cavitation threshold for therapeutic applications is also discussed.


Journal of Biomedical Optics | 2015

Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

Thu-Mai Nguyen; Bastien Arnal; Shaozhen Song; Zhihong Huang; Ruikang K. Wang; Matthew O’Donnell

Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6).

Collaboration


Dive into the Bastien Arnal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Pelivanov

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Thu Mai Nguyen

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Wei Wei

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jinjun Xia

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaozhen Song

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Emily Y. Wong

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge