Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bavita Asthir is active.

Publication


Featured researches published by Bavita Asthir.


Plant Growth Regulation | 2010

Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress

Meenakshi Goyal; Bavita Asthir

Effect of high temperature stress on polyamine catabolism and antioxidant enzyme activity in relation to glutathione, ascorbate and proline accumulation was studied in five wheat (Triticum aestivum L.) genotypes (differently susceptible to temperature stress). High temperature significantly increased the activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and glutathione S-transferase (GST) in shoots of all genotypes. Higher activities of GPX in C 306, C 273 and APX in PBW 550, PBW 343 and PBW 534 demonstrate their important role in scavenging H2O2. Conversely, high temperature stress led to a significant decline in SOD, CAT, APX and GPX activities of roots with a subsequent increase in diamine oxidase (DAO) and polyamine oxidase (PAO) activities especially in PBW 550 and PBW 343. The concentration of ascorbic acid declined with the imposition of heat stress, however, polyamines responded to high temperature stress by increasing spermidine and spermine levels and decreasing putrescine levels. After exposure to high temperature, proline accumulation was significantly decreased in roots and increased in shoots though maximum concentration was achieved in C 306 genotype. Apparently, the wheat seedlings respond to high temperature mediated increase in reactive oxygen species (ROS) production by altering antioxidative defense mechanism and polyamine catabolism though differentially in five wheat genotypes. Among five genotypes studied, C 306 and C 273 seem to be better protected against temperature stress. The results suggested that shoots were more resistant against the destructive effects of ROS as is indicated by low levels of thiobarbituric acid reactive substances under high temperature stress.


Biologia Plantarum | 2015

Proline: a key player in plant abiotic stress tolerance

G. Kaur; Bavita Asthir

Dramatic accumulation of proline is a common physiological response in plants exposed to various abiotic stresses. Accumulation of proline could be due to de novo synthesis, decreased degradation, lower utilization, or hydrolysis of proteins. Extensive intercellular proline transport occurs between the cytosol, chloroplasts, and mitochondria due to its compartmentalized metabolism. Although all functions of proline in stress tolerance are still a matter of debate, it is suggested that proline contributes to stabilization of sub-cellular structures, scavenging free radicals, and buffering cellular redox potential. It also chelates heavy metals, modulates cellular functions, and even triggers gene expression. Apparently, proline acts as stress-related signal exhibiting cross tolerance to a range of different stresses. Besides these significant roles, its metabolism is found to be coupled to several key pathways such as pentose phosphate, tricarboxylic acid, or urea cycles and contributes to, i.e., purine synthesis and the phenylpropanoid pathway. Although the molecular basis of regulation of proline metabolism is still largely obscure, the genetic engineering of proline content could lead to new opportunities to achieve plant stress tolerance.


Biologia Plantarum | 2012

Putrescine modulates antioxidant defense response in wheat under high temperature stress

Bavita Asthir; A. Koundal; N. S. Bains

Effects of putrescine (Put) on responses of wheat (Triticum aestivum) seedlings or detached tillers at mid-milky stage to high temperature (HT) stress were investigated. The heat tolerant cv. PBW 343 exhibited higher content of antioxidants and activities of antioxidative enzymes, while lower content of lipid peroxides as compared to the heat-sensitive cv. HD 2329. HT elevated peroxidase (POX) and superoxide dismutase (SOD) activities, while diamine oxidase (DAO) and polyamine oxidase (PAO) activities were reduced in roots, shoots and developing grains. Application of Put under HT further enhanced POX and SOD activities along with increased content of ascorbate and tocophereol in grains. Invariably POX and SOD revealed higher activities in roots while CAT, DAO and PAO activities were higher in shoots. The content of lipid peroxides was increased in roots and shoots of HT stressed seedlings but less in Put-treated cv. PBW 343.


Biologia Plantarum | 2010

Stimulation of antioxidative enzymes and polyamines during stripe rust disease of wheat

Bavita Asthir; A. Koundal; N. S. Bains; Satwinder K. Mann

Content of polyamines and activities of antioxidative enzymes in response to stripe rust disease caused by Puccinia striiformis have been studied in two wheat (Triticum aestivum L.) cultivars PBW 343 (resistant) and HD 2329 (susceptible). Various infection stages ranging from traces to 100 % were collected. Infection leads to stimulation of peroxidase (POD), superoxide dismutase (SOD), catalase, diamine oxidase and polyamine oxidase activities along with increase in putrescine, spermidine and spermine content while ascorbate, tocopherol and chlorophyll content decreased in HD 2329 and no visible symptoms appeared in PBW 343. Histochemical localization pattern of POD and SOD activities revealed correlation with lignin deposition in cell walls.


Journal of Plant Interactions | 2015

Protective mechanisms of heat tolerance in crop plants

Bavita Asthir

High temperature (HT) has become a global concern because it severely affects the growth and production of crops. Heat stress causes an abrupt increase in the expression of stress-associated proteins which provide tolerance by stimulating the defense response in plants. Heat-shock proteins (Hsps) and antioxidant enzymes are important in encountering heat stress in plants. The heat-shock response is characterized by repression of normal cellular protein synthesis and induction of Hsp synthesis. Under HT stress, upregulation of various enzymatic and nonenzymatic antioxidants, maintenance of cell membrane stability, production of various compatible solutes and hormonal changes occurs. Reactive oxygen species involving several pathways such as water–water cycle, Halliwell–Asada, glutathione peroxidase, Haber–Weiss and Fenton reactions helps in protecting plants against toxic radicals which otherwise could cause damage to lipophilic protein. Genetic approaches to elucidate and map genes or quantitative trait loci conferring thermotolerance will facilitate marker-assisted breeding for heat tolerance and also pave the way for characterizing genetic factors which could be useful for engineering plants with improved heat tolerance. This review discusses the protective mechanism of heat stress responses encompassing different pathways that provide tolerance during HT stress.


Biologia Plantarum | 2015

Mechanisms of heat tolerance in crop plants

Bavita Asthir

Due to possible climate changes, heat stress has obtained a serious concern all over the world. Tolerance to this stress via knowledge of metabolic pathways will help us in engineering heat tolerant plants. A group of proteins called heat shock proteins are synthesized following stress and their synthesis is regulated by transcription factors. Under high temperature (HT), reactive oxygen species (ROS) are often induced and can cause damage to lipids, proteins, and nucleic acids. To scavenge the ROS and maintain cell membrane stability, synthesis of antioxidants, osmolytes, and heat shock proteins is of a vital importance. In view of above mentioned, this review highlights the detailed mechanism of pathways involving crucial steps that change during HT stress.


Journal of Plant Biochemistry and Biotechnology | 1995

Invertase-mediated Interconversion of Sucrose and Hexoses During Their Translocation in Growing Pearl Millet Plant

Bavita Asthir; Rangil Singh

Metabolism of free sugars, particularly sucrose, in various plant tissues enroute from leaf sheaths to grains in growing pearl millet was studied. With the enhancement in growth, the levels of both reducing and non-reducing sugars declined in middle and basal leaf sheaths but increased in flag leaf sheath towards plant maturity. In sheath, wall-bound invertase was more active than soluble invertases and the activities of all these enzymes rose towards maturity. Besides hexoses and sucrose, some fructose polymers were also detected in the internodes. In contrast with internodes, where the levels of total free sugars declined till around anthesis, in penultimate node their levels continuously increased, but attained peak values at 65 CAS in middle- and basal nodes. In both these tissues, arriving sucrose encounters invertases but in nodes wall-bound invertase appears to be the pivotal one. On feeding (U-14C)-sucrose to the detached ear-heads a large proportion of 14C was incorporated into hexoses alone in peduncle and rachis. PCMBS and HgCl2 inhibited the metabolism of sucrose supplied to peduncle and rachis pointing to the involvement of invertases in sucrose cleavage in these organs. Through the regulated operation of invertase(s), the nodes seem to maintain a controlled flow of free sugars from source to sink tissue.


Biologia Plantarum | 1998

Fluoride-induced alteration of carbon and nitrogen metabolism in developing wheat grains

Bavita Asthir; A.S. Basra; S.K. Batta

Effect of fluoride (10 and 50 mM) on the activities of sucrose metabolizing enzymes, alkaline inorganic pyrophosphatase, and transaminases in relation to the accumulation of free sugars, starch, and soluble protein was studied in detached ears of wheat cultured in a liquid medium. Culturing for 5 d in the presence of fluoride reduced the amount of grain starch whereas contents of total free sugars, particularly sucrose, and soluble protein increased. Fluoride inhibited the activities of soluble acid and neutral invertases, as well as sucrose synthase acting in the cleavage direction. Uptake of uniformly labelled 14C-sucrose or fructose was also drastically reduced by fluoride. Glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) activities also increased with fluoride addition in correspondence with an increase in soluble protein. Apparently, the wheat grain responds to fluoride-mediated disruption of carbon metabolism by a compensatory effect on nitrogen metabolism.


Plant Growth Regulation | 2004

Correlation of gibberellin-induced growth, polyamine levels and amine oxidases in epicotyl, root and leaf blade of barley seedlings

Bavita Asthir; Carol M. Duffus; William Spoor

The potential role of diamine oxidase (DAO) and polyamine oxidase (PAO) in relation to polyamines was investigated in epicotyls, roots and leaf blades at 3 and 6 days after gibberellic acid (GA) application in barley (Hordeum vulgare L.) seedlings of cvs. Maythorpe (non-mutant parent) and Golden Promise (semi-dwarf mutant). There was a significant increase in epicotyl and leaf-blade elongation rates in GA-treated seedlings of cv. Maythorpe as compared to cv. Golden Promise. DAO and PAO were detectable in all segments of the leaf blade, but the highest activities were present in basal segments. These enzymes, which are thought to have a role in the elimination of cellular polyamines, increased in activity following GA application compared to controls. Application of 10−6 M GA to the first leaf, significantly increased endogenous bound putrescine (Put) levels in both the epicotyl and leaf blade of cv. Maythorpe. In contrast, there was only a slight increase in cv. Golden Promise. Levels of soluble Put increased in roots and leaf blades of both cultivars following GA treatment but the effect was greatest in leaves of cv. Maythorpe. It is suggested that polyamines may play a role in GA-induced epicotyl and leaf-blade elongation in barley.


Acta Physiologiae Plantarum | 1999

Differential response of carbon and nitrogen metabolism to fluoride application in fruiting structures of chickpea (Cicer arietinum)

Bavita Asthir; Amarjit S. Basra; Suresh K. Batta

The effect of sodium fluoride (10 and 50 mol·m−3) on the activities of sucrose metabolizing enzymes, transaminases and glutamine synthetase in relation to the transformation of free sugars to starch and protein in the fruiting structures (pod wall, seed coat, cotyledons) of chickpea was studied by culturing detached reproductive shoots in a liquid medium. Addition of fluoride to the culture medium drastically reduced starch content of the cotyledons and caused a marked build-up of total free sugars comprised mainly of reducing sugars in the pod wall and seed coat, and sucrose in the cotyledons. Concomitantly, the activity of soluble invertase was stimulated in the pod wall but reduced in the cotyledons. However, soluble protein content of both the pod wall and the cotyledons increased in conjunction with an increase in the activities of glutamate-oxaloacetate transaminase, glutamate-pyruvate transaminase and glutamine synthetase. Disruption of starch biosynthesis under the influence of fluoride and the resulting accumulation of free sugars possibly resulted in their favoured utilization in nitrogen metabolism. Labelling studies with [U-14C]-sucrose showed that the 14C incorporation into total free sugars was enhanced by fluoride in the pod wall but reduced in the seed coat and cotyledons, possibly due to an inhibitory effect on their translocation to the developing seeds.

Collaboration


Dive into the Bavita Asthir's collaboration.

Top Co-Authors

Avatar

N. S. Bains

Punjab Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Gurpreet Kaur

Punjab Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Amarjit S. Basra

Punjab Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Balraj Kaur

Punjab Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Manisha Kumari

Punjab Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Rangil Singh

Punjab Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Satwinder K. Mann

Punjab Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shashi Bala

Punjab Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Surekha Bhatia

Punjab Agricultural University

View shared research outputs
Top Co-Authors

Avatar

A. Koundal

Punjab Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge