Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baxter Abraham is active.

Publication


Featured researches published by Baxter Abraham.


Journal of Physical Chemistry Letters | 2014

Photoinduced Ultrafast Heterogeneous Electron Transfer at Molecule–Semiconductor Interfaces

Jesus Nieto-Pescador; Baxter Abraham; Lars Gundlach

This Perspective discusses recent developments in ultrafast electron transfer dynamics at interfaces between organic and inorganic materials. Heterogeneous electron transfer (HET) is a key process in important fields like catalysis and solar energy conversion. Furthermore, the solid state nature of the systems gives control over relevant parameters and allows for investigating excited state dynamics and electron transfer processes in unprecedented detail. Progress in synthesis, sample preparation, and instrumentation makes it possible to provide experimental proof of recent prediction from theory concerning the adiabaticity of the reaction and the influence of coherence. A short recapitulation of the field is followed by a discussion of recent experimental efforts that allowed for studying HET, particularly focusing on the influence of energetics and vibrational dynamics.


Journal of Physical Chemistry C | 2016

Heterogeneous Electron-Transfer Dynamics through Dipole-Bridge Groups

Jesus Nieto-Pescador; Baxter Abraham; Jingjing Li; Alberto Batarseh; Robert A. Bartynski; Elena Galoppini; Lars Gundlach

Heterogeneous electron transfer (HET) between photoexcited molecules and colloidal TiO2 has been investigated for a set of Zn-porphyrin chromophores attached to the semiconductor via linkers that allow to change level alignment by 200 meV by reorientation of the dipole moment. These unique dye molecules have been studied by femtosecond transient absorption spectroscopy in solution and adsorbed on the TiO2 colloidal film in vacuum. In solution energy transfer from the excited chromophore to the dipole group has been identified as a slow relaxation pathway competing with S2-S1 internal conversion. On the film heterogeneous electron transfer occurred in 80 fs, much faster compared to all intramolecular pathways. Despite a difference of 200 meV in level alignment of the excited state with respect to the semiconductor conduction band, identical electron transfer times were measured for different linkers. The measurements are compared to a quantum-mechanical model that accounts for electronic-vibronic coupling and finite band width for the acceptor states. We conclude that HET occurs into a distribution of transition states that differs from regular surface states or bridge mediated states.


Journal of Physical Chemistry B | 2018

Probing Cytochrome c Folding Transitions upon Phototriggered Environmental Perturbations Using Time-Resolved X-ray Scattering

Dolev Rimmerman; Denis Leshchev; Darren J. Hsu; Jiyun Hong; Baxter Abraham; Robert Henning; Irina Kosheleva; Lin X. Chen

Direct tracking of protein structural dynamics during folding-unfolding processes is important for understanding the roles of hierarchic structural factors in the formation of functional proteins. Using cytochrome c (cyt c) as a platform, we investigated its structural dynamics during folding processes triggered by local environmental changes (i.e., pH or heme iron center oxidation/spin/ligation states) with time-resolved X-ray solution scattering measurements. Starting from partially unfolded cyt c, a sudden pH drop initiated by light excitation of a photoacid caused a structural contraction in microseconds, followed by active site restructuring and unfolding in milliseconds. In contrast, the reduction of iron in the heme via photoinduced electron transfer did not affect conformational stability at short timescales (<1 ms), despite active site coordination geometry changes. These results demonstrate how different environmental perturbations can change the nature of interaction between the active site and protein conformation, even within the same metalloprotein, which will subsequently affect the folding structural dynamics.


Nano Letters | 2018

Evaluating the Mechanisms of Light-Triggered siRNA Release from Nanoshells for Temporal Control Over Gene Regulation

Rachel S. Riley; Megan N. Dang; Margaret M. Billingsley; Baxter Abraham; Lars Gundlach; Emily S. Day

The ability to regulate intracellular gene expression with exogenous nucleic acids such as small interfering RNAs (siRNAs) has substantial potential to improve the study and treatment of disease. However, most transfection agents and nanoparticle-based carriers that are used for the intracellular delivery of nucleic acids cannot distinguish between diseased and healthy cells, which may cause them to yield unintended widespread gene regulation. An ideal delivery system would only silence targeted proteins in diseased tissue in response to an external stimulus. To enable spatiotemporal control over gene silencing, researchers have begun to develop nucleic acid-nanoparticle conjugates that keep their nucleic acid cargo inactive until it is released from the nanoparticle on-demand by externally applied near-infrared laser light. This strategy can overcome several limitations of other nucleic acid delivery systems, but the mechanisms by which these platforms operate remain ill understood. Here, we perform a detailed investigation of the mechanisms by which silica core/gold shell nanoshells (NSs) release conjugated siRNA upon excitation with either pulsed or continuous wave (CW) near-infrared (NIR) light, with the goal of providing insight into how these nanoconjugates can enable on-demand gene regulation. We demonstrate that siRNA release from NSs upon pulsed laser irradiation is a temperature-independent process that is substantially more efficient than siRNA release triggered by CW irradiation. Contrary to literature, which suggests that only pulsed irradiation releases siRNA duplexes, we found that both modes of irradiation release a mixture of siRNA duplexes and single-stranded oligonucleotides, but that pulsed irradiation results in a higher percentage of released duplexes. To demonstrate that the siRNA released from NSs upon pulsed irradiation remains functional, we evaluated the use of NSs coated with green fluorescent protein (GFP)-targeted siRNA (siGFP-NS) for on-demand knockdown of GFP in cells. We found that GFP-expressing cells treated with siGFP-NS and irradiated with a pulsed laser experienced a 33% decrease in GFP expression compared to cells treated with no laser. Further, we observed that light-triggered gene silencing mediated by siGFP-NS is more potent than using commercial transfection agents to deliver siRNA into cells. This work provides unprecedented insight into the mechanisms by which plasmonic NSs release siRNA upon light irradiation and demonstrates the importance of thoroughly characterizing photoresponsive nanosystems for applications in triggered gene regulation.


Journal of Physical Chemistry Letters | 2018

Morphology-Preserving Sensitization of ZnO Nanorod Surfaces via Click-Chemistry

Chuan He; Baxter Abraham; Hao Fan; Ryan Harmer; Zhengxin Li; Elena Galoppini; Lars Gundlach; Andrew V. Teplyakov

Films of ZnO nanorods grown by chemical vapor deposition were functionalized with a chromophore in a stepwise process that preserves the surface morphology. In the first step, the ZnO nanorods were functionalized by exposure to prop-2-ynoic acid (propiolic acid) in vacuum, which did bind through the COOH group leading to a ZnO surface functionalized with ethyne moieties (ethyne/ZnO). In the second step, 9-(4-azidophenyl)-2,5-di-tert-butylperylene (DTBPe-Ph-N3) was reacted with the ethyne/ZnO surface via copper-catalyzed azide-alkyne click reaction (CuAAC) in solution to form the DTBPe-functionalized surface (DTBPe/ZnO). The ZnO morphology was preserved after each step, as demonstrated by scanning electron microscopy (SEM). Each step was probed by X-ray photoelectron spectroscopy (XPS), and transient absorption spectroscopy (TA) of the resulting DTBPe/ZnO surface shows interfacial electron transfer following visible light excitation. As expected, attempts to bind the reference compound 1-(4-(8,11-ditert-butylperylen-3-yl)-phenyl)-1H-1,2,3-triazole-4-carboxylic acid (DTBPe-Ph-Tz-COOH) directly from solution lead to etched surfaces (confirmed by SEM) and undefined binding modes (confirmed by TA).


Journal of Physical Chemistry A | 2018

Vibrational Spectroscopy on Photoexcited Dye-Sensitized Films via Pump-Degenerate Four-Wave Mixing

Baxter Abraham; Hao Fan; Elena Galoppini; Lars Gundlach

Molecular sensitization of semiconductor films is an important technology for energy and environmental applications including solar energy conversion, photocatalytic hydrogen production, and water purification. Dye-sensitized films are also scientifically complex and interesting systems with a long history of research. In most applications, photoinduced heterogeneous electron transfer (HET) at the molecule/semiconductor interface is of critical importance, and while great progress has been made in understanding HET, many open questions remain. Of particular interest is the role of combined electronic and vibrational effects and coherence of the dye during HET. The ultrafast nature of the process, the rapid intramolecular vibrational energy redistribution, and vibrational cooling present complications in the study of vibronic coupling in HET. We present the application of a time domain vibrational spectroscopy-pump-degenerate four-wave mixing (pump-DFWM)-to dye-sensitized solid-state semiconductor films. Pump-DFWM can measure Raman-active vibrational modes that are triggered by excitation of the sample with an actinic pump pulse. Modifications to the instrument for solid-state samples and its application to an anatase TiO2 film sensitized by a Zn-porphyrin dye are discussed. We show an effective combination of experimental techniques to overcome typical challenges in measuring solid-state samples with laser spectroscopy and observe molecular vibrations following HET in a picosecond time window. The cation spectrum of the dye shows modes that can be assigned to the linker group and a mode that is localized on the Zn-phorphyrin chromophore and that is connected to photoexcitation.


Langmuir | 2017

Synthesis and Characterization of ZnO/CuO Vertically Aligned Hierarchical Tree-like Nanostructure

Zhengxin Li; Meng Jia; Baxter Abraham; Jolie C. Blake; Daniel Bodine; John T. Newberg; Lars Gundlach

Vertically aligned ZnO nanowire-based tree-like structures with CuO branches were synthesized on the basis of a multistep seed-mediated hydrothermal approach. The nanotrees form a p-n junction at the branch/stem interface that facilitates charge separation upon illumination. Photoelectrochemical measurements in different solvents show that ZnO/CuO hierarchical nanostructures have enhanced photocatalytic activity compared to that of the nonhierarchical structure of ZnO/CuO, pure ZnO, and pure CuO nanoparticles. The combination of ZnO and CuO in tree-like nanostructures provides opportunities for the design of photoelectrochemical sensors, photocatalytic synthesis, and solar energy conversion.


Physical Chemistry Chemical Physics | 2015

Electronic state dependence of heterogeneous electron transfer: injection from the S1 and S2 state of phlorin into TiO2

Jesus Nieto-Pescador; Baxter Abraham; Allen J. Pistner; Joel Rosenthal; Lars Gundlach


Journal of Physical Chemistry Letters | 2016

Ultrafast Relaxation Dynamics of Photoexcited Zinc-Porphyrin: Electronic-Vibrational Coupling

Baxter Abraham; Jesus Nieto-Pescador; Lars Gundlach


Photochemical and Photobiological Sciences | 2018

Insulin hexamer dissociation dynamics revealed by photoinduced T-jumps and time-resolved X-ray solution scattering

Dolev Rimmerman; Denis Leshchev; Darren J. Hsu; Jiyun Hong; Baxter Abraham; Irina Kosheleva; Robert Henning; Lin X. Chen

Collaboration


Dive into the Baxter Abraham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiyun Hong

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Lin X. Chen

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge