Beat Oertli
University of Applied Sciences Western Switzerland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beat Oertli.
Biological Conservation | 2002
Beat Oertli; Dominique Auderset Joye; Emmanuel Castella; Raphaelle Juge; Diana Georgette Cambin; Jean-Bernard Lachavanne
Larger areas support more species. To test the application of this biogeographic principle to ponds, we consider the relationship between size and diversity for 80 ponds in Switzerland, using richness (number of species) and conservation value (score for all species present, according to their degree of rarity) of aquatic plants, molluscs (Gastropoda, Sphaeriidae), Coleoptera, Odonata (adults) and Amphibia. Pond size was found to be important only for Odonata and explained 31% of the variability of their species richness. Pond size showed only a feeble relationship with the species richness of all other groups, particularly the Coleoptera and Amphibia. The weakness of this relationship was also indicated by the low z-values obtained (< 0.13). The SLOSS analyses showed that a set of ponds of small size has more species and has a higher conservation value than a single large pond of the same total area. But we also show that large ponds harbour species missing in the smaller ponds. Finally, we conclude that in a global conservation policy (protection, restoration, management), all size ranges of ponds should be promoted.
Hydrobiologia | 2008
Régis Céréghino; Jeremy Biggs; Beat Oertli; Steven Declerck
There is growing awareness in Europe of the importance of ponds, and increasing understanding of the contribution they make to aquatic biodiversity and catchment functions. Collectively, they support considerably more species, and specifically more scarce species, than other freshwater waterbody types. Ponds create links (or stepping stones) between existing aquatic habitats, but also provide ecosystem services such as nutrient interception, hydrological regulation, etc. In addition, ponds are powerful model systems for studies in ecology, evolutionary biology and conservation biology, and can be used as sentinel systems in the monitoring of global change. Ponds have begun to receive greater protection, particularly in the Mediterranean regions of Europe, as a result of the identification of Mediterranean temporary ponds as a priority in the EU Habitats Directive. Despite this, they remain excluded from the provisions of the Water Framework Directive, even though this is intended to ensure the good status of all waters. There is now a need to strengthen, develop and coordinate existing initiatives, and to build a common framework in order to establish a sound scientific and practical basis for pond conservation in Europe. The articles presented in this issue are intended to explore scientific problems to be solved in order to increase the understanding and the protection of ponds, to highlight those aspects of pond ecology that are relevant to freshwater science, and to bring out research areas which are likely to prove fruitful for further investigation.
Hydrobiologia | 2009
Beat Oertli; Régis Céréghino; Andrew Hull; Rosa Miracle
In Europe, ponds are an exceptionally numerous and widely distributed landscape feature forming a major part of the continental freshwater resource and contributing significantly to freshwater biodiversity conservation. This has been reflected by a growing scientific concern over the first few years of the twenty-first century and is evidenced by an increasing number of academic publications on pond related topics, particularly those relating to biodiversity. It is essential, however, that this expanding scientific knowledge is widely disseminated to those involved with pond management and is then rapidly translated into action. Inevitably, the task of transferring science to practice remains a significant challenge. As a first step towards meeting this challenge the European Pond Conservation Network (EPCN), at its biennial meeting in 2008 in Valencia (Spain), made this the main theme of the conference together with two special workshops further encouraging exchanges between scientists, practitioners and policy makers. The papers selected for this special issue of Hydrobiologia (from over 120 communications presented) are all from the conference. They represent a diverse collection of themes from across the continent and North Africa and present new and original insights into topics as wide ranging as: pond biodiversity; human disturbance; landscape ecology; ecological assessment and monitoring; practical management measures; ecological restoration; hydrology and climate change; invasive species and threatened species. In all cases, the papers demonstrate an overriding need for the development of a tight link between scientific knowledge and management. Furthermore, scientific advances have to be beneficial for on the ground management and, vitally, have to be disseminated, communicated and implemented into local, national and international policy. As such, national and international networks (such as the EPCN) have a central role to play and have to develop a robust information and communication strategy which will enable the dissemination of best practice materials and advice across the continent and beyond. The work contained in this volume represents a step in the right direction and will help to ensure that ponds remain a characteristic and highly visible feature of the European landscape in the twenty-first century.
Oecologia | 1993
Beat Oertli
Energy generated by leaf litter processing and its flow through the associated macroinvertebrate community was quantified in a pond near Geneva (Switzerland). Annual density, biomass, and production on oak (Quercus robur) leaf litter were assessed for all macroinvertebrate taxa with emphasis on predators. Empirical energetic relations provided an energy budget for the macroinvertebrate community. On 1 m2 of pond bottom, the processing of 5641 kJ of oak leaf litter resulted in 8.5% of leachate (6 days), and after 1 year 32% of material remained; the other 59.5% was biologically (animal or microbial) converted, including 11.2% processed by shredders. The mean annual density of associated macroinvertebrates was 51374 individuals, mean biomass was 3.53 g (dry mass) and production was about 1451 kJ (or 65 g). Predator production was 170 kJ/m2, non-chironomid primary consumer production was 101 kJ/m2 (including 57 kJ from shredders) and chironomid primary consumer production was estimated at 1180 kJ/m2. Predators contributed to a high proportion of total biomass (39%) but to a smaller amount of production (12%) or density (6%). In this two-stepped food-chain mainly based on detritus, the transfer coefficient between first level (detritus + primary producers) and third level (secondary consumers) was high (2–2.5%) and indicated efficient conversion of energy. This high efficiency was partly related to the reutilization of fine particulate organic matter by the collectors. The production estimate measured on leaf litter was compared with two other predominant substrates (Typha latifolia stems and Chara sp.), and exhibited the highest value. This study shows how leaf litter can constitute a direct source for high secondary production and be an efficient energy source in freshwater ecosystems. It is also demonstrated that a woodland pond can support a high macroinvertebrate production as compared with other freshwater ecosystems.
Aquatic Botany | 1995
Sushma Sher-Kaul; Beat Oertli; Emmanuel Castella; Jean-Bernard Lachavanne
Mathematical relationships relating the biomass to the surface area of Elodea canadensis Michx., Myriophyllum spicatum L., Nitellopsis obtusa (Desv.) J.Gr., Potamogeton lucens L., Potamogeton pectinatus L. and Potamogeton perfoliatus L. were developed. The methods leading to these relations are presented for plants from Lake Geneva (Switzerland). Results include three sets of data for each species: leaves, stems and whole plant. Differences were evidenced according to plant species; for a same biomass E. canadensis and M. spicatum offered the highest surface area, P. pectinatus and N. obtusa the lowest. For 1.0 g dry weight of whole plant, the surface area was 1255 cm2 for E. canadensis, 1205 cm2 for M. spicatum, 560 cm2 for N. obtusa, 653 cm2 for P. lucens, 500 cm2 for P. pectinatus, and 762 cm2 for P. perfoliatus. Plants with dissected morphology did not necessarily offer the largest surface area per unit biomass.
Hydrobiologia | 2014
Régis Céréghino; Dani Boix; Henry-Michel Cauchie; Koen Martens; Beat Oertli
The fifth conference of the European Pond Conservation Network (Luxembourg, June 2012) brought together researchers, environmental managers, and other stakeholders with the aim to share state-of-the-art knowledge on the ecology, management, and conservation of ponds in the context of the many challenges facing the wider water environment. Although well-known ecological patterns apply to most ponds in Europe and elsewhere, recent data highlight that part of the environmental variables governing pond biodiversity remain specific to climatic/biogeographic regions and to elevation ranges, suggesting that, in addition to common practice, management plans should include range-specific measures. Beyond the contribution of individual ponds to the aquatic and terrestrial life, connected networks of ponds are vital in the provision of new climate space as a response to global climate change, by allowing the observed northward and/or upward movements of species. In terms of services, ponds offer sustainable solutions to key issues of water management and climate change such as nutrient retention, rainfall interception, or carbon sequestration. While the ecological role of ponds is now well-established, authoritative research-based advice remains needed to inform future direction in the conservation of small water bodies and to further bridge the gap between science and practice.
Biodiversity and Conservation | 1999
V. Godreau; Gudrun Bornette; B. Frochot; C. Amoros; Emmanuel Castella; Beat Oertli; F. Chambaud; D. Oberti; E. Craney
Biodiversity of European floodplains is seriously threatened mainly due to (1) modifications of river courses such as channelisation or embankments, and (2) changes in traditional agricultural practices (i.e. usually pastures), into intensive production using drainage and fertilisation. A upstream-downstream survey of the Saône floodplain (France) has been done to identify the contribution of habitats to the floodplain biodiversity. Selected taxa were aquatic and terrestrial vegetation, Odonata, Coleoptera, Amphibians, and birds. The taxa were sampled in different habitat types that were: forests, grasslands and aquatic habitats. Tributary confluences with the river and cut-off channels contributed greatly to the floodplain diversity according to their invertebrates and aquatic vegetation communities. The abundance of rare species (benefitting of a national or regional protection status) was the highest in hygrophilous grasslands. Moreover, we demonstrated that diversity of breeding bird communities was correlated with the size of these habitats. We demonstrated also that alluvial forests contributed to maintain some particular species as Middle-spotted Woodpecker (Dendrocopus medius), while new plantations were colonized by openland bird communities sensible to the edge effect. Grassland fragmentation for agriculture appeared to be a major cause in biodiversity loss. Any alteration of the floodplain dynamics must be avoided to preserve the present diversity of riverine wetlands.
Hydrobiologia | 2014
Paulo De Marco; Denis Silva Nogueira; Caroline Costa Correa; Thiago Bernardi Vieira; Karina Dias Silva; Nelson Silva Pinto; David Bichsel; Andrezza Sayuri Victoriano Hirota; Raísa Romênia Silva Vieira; Fernanda Melo Carneiro; Arthur A. Bispo de Oliveira; Priscilla Carvalho; Rogério Pereira Bastos; Christiane Ilg; Beat Oertli
There is a worldwide concern on the loss of pond biodiversity in human dominated landscapes. Nevertheless, agricultural activities appear to increase pond number in the Brazilian Cerrado through damming streams for cattle raising. These man-made ponds may represent important landscape features, but their importance to regional biodiversity has not yet been studied. Here, we evaluated differences in alpha and beta diversity under a multi-taxonomic approach, as well as tested pond size as the main driver of local species richness. We also assessed the importance of environmental heterogeneity through the analysis of the regional species accumulation curves (SAC). The overall result suggests that species turnover was the major component of regional biodiversity for all groups. Major physical and chemical water conditions had no effects on algae, macrophytes, water bugs, and birds species richness. Pond size had a significant effect on Odonata and fish species richness, while water beetles and amphibians were influenced by trophic conditions. Results from regional SAC show variations among different taxonomic groups regarding landscape heterogeneity: only algae, fish, and birds do not reached to an asymptote and had higher z-values. Our results highlight the importance of ponds for biodiversity conservation in increasingly agricultural landscapes in central Brazil.
Hydrobiologia | 1995
Beat Oertli
Spatial and temporal changes of zoobenthos composition and density were assessed in a woodland pond, near Geneva (Switzerland), by monthly sampling (during 15 months), on the three main substrates: a submerged macrophyte (Chara sp.), an emergent macrophyte (Typha latifolia stems) and allochthonous detritus (oak leaves).
Journal of Applied Ecology | 2014
Véronique Rosset; Sandrine Angélibert; Florent Arthaud; Gudrun Bornette; Joël Robin; Alexander Wezel; Dominique Vallod; Beat Oertli
Eutrophication remains a major stress for freshwater biodiversity. Its deleterious consequences on biodiversity are well documented for large waterbodies. However, the impact of eutrophication may differ in smaller waterbodies, such as ponds and small lakes, which generally support naturally high levels of nutrients in lowlands. Furthermore, this response could depend on the scale considered, from local (individual waterbody, alpha diversity) to regional (the network of waterbodies, gamma diversity). It is also unclear whether the richness of threatened species responds in the same way as the richness of the whole assemblage. The present study investigates local- and regional-scale consequences of eutrophication on taxonomic richness (all taxa) and conservation value (threatened taxa) in temperate lowland small waterbodies. Five taxonomic groups were investigated: macrophytes, gastropods, water beetles, adult dragonflies and amphibians, in a set of natural waterbodies and a set of enriched waterbodies covering a large nutrient gradient from mesotrophic to hypertrophic conditions. Globally, our study did not reveal consistent, systematic responses to eutrophication. For macrophytes, the richness and conservation value suffered from eutrophication at both local and regional scales. In contrast, for amphibians and gastropods, eutrophication did not impair biodiversity at the local nor the regional scale. Dragonflies and water beetles showed intermediate situations, with an impairment by eutrophication varying according to the type of waterbodies considered. At the regional scale, each trophic status, even the nutrient richest, brought an original contribution to biodiversity. Synthesis and applications. The management of eutrophication for small lowland waterbodies has to be considered differently than for lakes. For an individual waterbody (the local scale), nutrient enrichment is not necessarily a major impairment and its impact depends on the taxonomic group considered. Conversely, at the landscape scale, eutrophication is a major pressure on small waterbody biodiversity, especially because nutrient-rich small waterbodies are dominant in the landscape. Therefore, conservation efforts should integrate the notion of pond regional networks or ‘pondscapes’, where the regional biodiversity is supported by a mosaic of trophic conditions, and promote the presence of less rich waterbodies.