Beata Gruszka
Adam Mickiewicz University in Poznań
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beata Gruszka.
Journal of Paleolimnology | 2013
Dominik Pawłowski; Beata Gruszka; Hanna Gallas; Joanna Petera-Zganiacz
Upper Saalian (Illinoian) glaciolacustrine deposits in central Poland, preserved in a tectonic graben, were exposed in an opencast lignite mine and investigated using sedimentological and micro-paleontological methods. The extraglacial lake sediments provide the first records of late Saalian cladoceran communities in central Europe, recovered from glaciolacustrine deposits. Sedimentation was dominated by a supply of clastics that fluctuated with the seasons, forming rhythmites. In addition to seasonal cyclicity, sedimentary and environmental conditions changed every several years to decades, with periods of increased inflow to the lake delivering sandy material, and periods of almost stagnant water dominated by suspension settling. The sediments contain Cladocera assemblages that indicate the lake was initially deep, oligotrophic, and filled with moderately cold water. Changes in Cladocera community composition and abundance were perhaps responses to climate seasonality. Zones without Cladocera were associated with seasons of higher inflow and sediment supply, and directly or indirectly, with tectonic activity in the graben. Earthquakes, documented by the presence of seismites, caused not only deformation of unconsolidated lake-bottom sediments, but possibly also changes in habitat characteristics. Combined sedimentological and biological data were used to infer the lake’s history and show that deposits of glaciolacustrine lakes can be used as indicators of past ecological and climate changes.
Geologos | 2012
Beata Gruszka; Wojciech Morawski; Tomasz Zieliński
Sedimentary record of a Pleistocene ice-sheet interlobate zone (NE Poland) Well developed NE-SW trending corridors of outwash in NE Poland are associated with a series of lakes with a similar direction of elongation. The glaciofluvial corridor under study consists of parallel ridges with associated channels and kames. The deposits are flanked by till and hummocky terrain. The gravel ridges are composed of sand and gravel deposits that are cross-stratified, massive or graded, and that contain cut-and-fill structures and large intra-clasts of sand and gravel. Locally the deposits show normal faults. The succession of one of the ridges is interpreted to reflect the infilling of a braided channel in a crevasse. Sedimentation took place in some phases when the ice-sheet regime changed from active to stagnant. Sandy-gravel ridges occur within this complex perpendicular to the Weichselian ice-sheet margin. The corridor is interpreted as an interlobate area in the zone between the Warmia and Mazury ice lobes. The braided-channel deposits are not comparable to typical Polish sandurs. The lithofacies characteristics show higher energy conditions, and the channels are deeper than those typical of Pleistocene lowland sandurs. The sand and gravel ridges are interpreted as interlobate eskers.
Geografiska Annaler Series A-physical Geography | 2015
Beata Gruszka; Sławomir Terpiłowski
Abstract Glaciolacustrine kames in the ielsk odlaski area (eastern oland) exhibit a unique regular pattern. Three representative morphological kame types were chosen for detailed sedimentological analyses, specifically: isolated, isometric mounds; isolated, elongated hills; and branching ridges. All types comprised fine‐grained sandy and sandy/silty deposits. Lithofacies analysis resulted in the distinction of several lithofacies associations. Associations dominated by medium‐ or large‐scale, massive or horizontally laminated sands are interpreted as proximal subaqueous fans; associations dominated by medium‐ or small‐scale lithofacies of ripple‐drift cross‐laminated sand are interpreted as distal subaqueous fans; and those dominated by sandy/silty, silty or silty/clayey lithofacies with horizontal lamination are interpreted as lake bottomsets. Rates of sediment accumulation appear to have been fast, resulting in syndepositional and metadepositional deformation structures of two types: water‐escape structures, and slumps on subaqueous slopes. After the ice‐walled lake basins filled with sediment, glaciofluvial erosion and deposition alternated, resulting in erosional channels of up to 1 m deep, later filled with gravel or gravely sand. The results indicate that kames developed in a supraglacial environment within a topography of ice‐cored moraines containing ice‐walled lakes that persisted due to the presence of permafrost. Pauses during retreat of the ice walls resulted in ice‐contact deformations at the edges of the kames. Kame formation is therefore consistent with a continental climate and this may explain the increased abundance of this type of kame system in astern urope.
Sedimentary Geology | 2007
Beata Gruszka; A.J. van Loon
Geological Quarterly | 2010
Beata Gruszka; Tomasz Zieliński
Sedimentary Geology | 2007
Beata Gruszka
Annales Societatis Geologorum Poloniae | 1996
Beata Gruszka; Tomasz Zieliński
Sedimentary Geology | 2007
Amir Mokhtari Fard; Beata Gruszka
Geological Quarterly | 2010
Mirosław Błaszkiewicz; Beata Gruszka
Sedimentary Geology | 2011
Beata Gruszka; A.J. van Loon