Beata Lacka
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beata Lacka.
Hypertension | 2002
Maciej Tomaszewski; Nick J.R. Brain; Fadi J. Charchar; W. Wang; Beata Lacka; Sandosh Padmanabahn; James S. Clark; Niall H. Anderson; Helen V. Edwards; Ewa Zukowska-Szczechowska; Władysław Grzeszczak; Anna F. Dominiczak
A region on human chromosome 5 (5q31.1-qter) contains several genes that encode important blood pressure regulators and thus is a good candidate for analysis of linkage and association with hypertension. We recruited 638 individuals from 212 Polish pedigrees with clustering of essential hypertension. These subjects were genotyped for 11 microsatellite markers that span this region to test for linkage to essential hypertension and systolic and diastolic blood pressures. The segment of this region of ≈7 cM delineated by D5S1480 and D5S500 markers was linked to blood pressures in multipoint analysis. In 2-point analysis, D5S1480—the marker in close proximity to β 2 -adrenergic receptor gene—reached the maximal linkage to essential hypertension and adjusted systolic and diastolic blood pressures, implicating this gene as a positional candidate for further association studies. Arg16Gly, Gln27Glu, and Thr164Ile—3 functional single nucleotide polymorphisms within the β 2 -adrenergic receptor gene—were tested for association with essential hypertension. None of these polymorphisms showed a significant association with essential hypertension, separately or in the haplotype analysis. This study provided evidence of linkage of 5q31.1-5qter region to essential hypertension in the European population. Moreover, it implicated the chromosomal segment in close proximity to D5S1480 and D5S500. The detailed analysis of 3 single nucleotide polymorphisms does not support the role of the β 2 -adrenergic receptor gene as a major causative gene for the detected linkage.A region on human chromosome 5 (5q31.1-qter) contains several genes that encode important blood pressure regulators and thus is a good candidate for analysis of linkage and association with hypertension. We recruited 638 individuals from 212 Polish pedigrees with clustering of essential hypertension. These subjects were genotyped for 11 microsatellite markers that span this region to test for linkage to essential hypertension and systolic and diastolic blood pressures. The segment of this region of ≈7 cM delineated by D5S1480 and D5S500 markers was linked to blood pressures in multipoint analysis. In 2-point analysis, D5S1480—the marker in close proximity to &bgr;2-adrenergic receptor gene—reached the maximal linkage to essential hypertension and adjusted systolic and diastolic blood pressures, implicating this gene as a positional candidate for further association studies. Arg16Gly, Gln27Glu, and Thr164Ile—3 functional single nucleotide polymorphisms within the &bgr;2-adrenergic receptor gene—were tested for association with essential hypertension. None of these polymorphisms showed a significant association with essential hypertension, separately or in the haplotype analysis. This study provided evidence of linkage of 5q31.1-5qter region to essential hypertension in the European population. Moreover, it implicated the chromosomal segment in close proximity to D5S1480 and D5S500. The detailed analysis of 3 single nucleotide polymorphisms does not support the role of the &bgr;2-adrenergic receptor gene as a major causative gene for the detected linkage.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2004
Fadi J. Charchar; Maciej Tomaszewski; Beata Lacka; Jaroslaw Zakrzewski; Ewa Zukowska-Szczechowska; Władysław Grzeszczak; Anna F. Dominiczak
Objective—Males are at higher risk of cardiovascular diseases than females. The aim of the study was to test whether the potential of the Y chromosome to affect cardiovascular risk could be attributed to its influence on lipids. Methods and Results—1288 Polish men (1157 subjects from young healthy cohort and 131 individuals from middle-aged hypertensive population) were phenotyped for determinants of cardiovascular risk including BMI, blood pressures, lipids, and testosterone. Each subject was genotyped for the Hin dIII(+/−) polymorphism within the nonrecombining region of the Y chromosome. Men with the Hin dIII(−) variant exhibited significantly higher total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) levels than subjects with the Hin dIII(+) genotype in both populations. The differences between the genotypes were 0.15 mmol/L (P =0.0107) and 0.45 mmol/L (P =0.0377) in TC and 0.15 mmol/L (P =0.0059) and 0.41 mmol/L (P =0.0432) in LDL among young apparently healthy men and middle-aged hypertensive men, respectively. The Hin dIII(+) was associated with a significant increase in blood pressure of the middle-aged men. Testosterone serum concentrations correlated positively with HDL-cholesterol levels, and this association was independent of the Y chromosome. Conclusions—The results indicate that a locus/loci on the Y chromosome may influence LDL levels, independent of testosterone levels.
Hypertension | 2004
Maciej Tomaszewski; Fadi J. Charchar; Beata Lacka; Ullamari Pesonen; W. Wang; Ewa Zukowska-Szczechowska; Władysław Grzeszczak; Anna F. Dominiczak
&bgr;2-Adrenergic receptor gene and neuropeptide Y gene may potentially influence lipid metabolism and overall energy balance. Therefore, we examined associations of these genes with lipid fractions and obesity-related phenotypes in hypertensive subjects. A total of 638 white individuals from 212 Polish families with clustering of essential hypertension were phenotyped for cardiovascular risk determinants. Each subject was genotyped for functional polymorphisms of &bgr; 2-adrenergic receptor gene (Arg16Gly and Gln27Glu) and neuropeptide Y (Leu7Pro). Of 3 common haplotypes of &bgr;2-adrenergic receptor gene, Arg16Gln27 was overtransmitted to offspring with elevated levels of total cholesterol (Z=2.2; P=0.026) and LDL-cholesterol (Z=3.2; P=0.002). Individually, Leu7Pro was not associated with any of the metabolic phenotypes in family-based tests or case-control analyses. However, in the presence of Arg allele of Arg16Gly and Gln allele of Gln27Glu, homozygosity for Leu variant of the Leu7Pro polymorphism was associated with 2.1-increased odds ratio (confidence interval, 1.10 to 3.81; P=0.024) of elevated LDL in hypertensive subjects, independent of age, gender, body mass index, adjusted blood pressures, antihypertensive therapy, and use of nonselective &bgr;-blockers and diuretics. Consistently, there was a significant multilocus association among variants of Arg16Gly, Gln27Glu, and Leu7Pro in hypertensive probands with elevated LDL (cases; P=0.028) but not in hypertensive subjects with normal LDL (controls). This study revealed an association of LDL-cholesterol with &bgr; 2-adrenergic receptor gene haplotype and provided evidence for epistatic interaction between &bgr;2-adrenergic receptor gene and neuropeptide Y gene in determination of LDL-cholesterol in patients with essential hypertension.
Hypertension | 2002
Maciej Tomaszewski; Nick J.R. Brain; Fadi J. Charchar; W. Wang; Beata Lacka; Sandosh Padmanabahn; James S. Clark; Niall H. Anderson; Helen V. Edwards; Ewa Zukowska-Szczechowska; Władysław Grzeszczak; Anna F. Dominiczak
A region on human chromosome 5 (5q31.1-qter) contains several genes that encode important blood pressure regulators and thus is a good candidate for analysis of linkage and association with hypertension. We recruited 638 individuals from 212 Polish pedigrees with clustering of essential hypertension. These subjects were genotyped for 11 microsatellite markers that span this region to test for linkage to essential hypertension and systolic and diastolic blood pressures. The segment of this region of ≈7 cM delineated by D5S1480 and D5S500 markers was linked to blood pressures in multipoint analysis. In 2-point analysis, D5S1480—the marker in close proximity to β 2 -adrenergic receptor gene—reached the maximal linkage to essential hypertension and adjusted systolic and diastolic blood pressures, implicating this gene as a positional candidate for further association studies. Arg16Gly, Gln27Glu, and Thr164Ile—3 functional single nucleotide polymorphisms within the β 2 -adrenergic receptor gene—were tested for association with essential hypertension. None of these polymorphisms showed a significant association with essential hypertension, separately or in the haplotype analysis. This study provided evidence of linkage of 5q31.1-5qter region to essential hypertension in the European population. Moreover, it implicated the chromosomal segment in close proximity to D5S1480 and D5S500. The detailed analysis of 3 single nucleotide polymorphisms does not support the role of the β 2 -adrenergic receptor gene as a major causative gene for the detected linkage.A region on human chromosome 5 (5q31.1-qter) contains several genes that encode important blood pressure regulators and thus is a good candidate for analysis of linkage and association with hypertension. We recruited 638 individuals from 212 Polish pedigrees with clustering of essential hypertension. These subjects were genotyped for 11 microsatellite markers that span this region to test for linkage to essential hypertension and systolic and diastolic blood pressures. The segment of this region of ≈7 cM delineated by D5S1480 and D5S500 markers was linked to blood pressures in multipoint analysis. In 2-point analysis, D5S1480—the marker in close proximity to &bgr;2-adrenergic receptor gene—reached the maximal linkage to essential hypertension and adjusted systolic and diastolic blood pressures, implicating this gene as a positional candidate for further association studies. Arg16Gly, Gln27Glu, and Thr164Ile—3 functional single nucleotide polymorphisms within the &bgr;2-adrenergic receptor gene—were tested for association with essential hypertension. None of these polymorphisms showed a significant association with essential hypertension, separately or in the haplotype analysis. This study provided evidence of linkage of 5q31.1-5qter region to essential hypertension in the European population. Moreover, it implicated the chromosomal segment in close proximity to D5S1480 and D5S500. The detailed analysis of 3 single nucleotide polymorphisms does not support the role of the &bgr;2-adrenergic receptor gene as a major causative gene for the detected linkage.
Hypertension | 2002
Maciej Tomaszewski; Nick J.R. Brain; Fadi J. Charchar; W. Wang; Beata Lacka; Sandosh Padmanabahn; James S. Clark; Niall H. Anderson; Helen V. Edwards; Ewa Zukowska-Szczechowska; Władysław Grzeszczak; Anna F. Dominiczak
A region on human chromosome 5 (5q31.1-qter) contains several genes that encode important blood pressure regulators and thus is a good candidate for analysis of linkage and association with hypertension. We recruited 638 individuals from 212 Polish pedigrees with clustering of essential hypertension. These subjects were genotyped for 11 microsatellite markers that span this region to test for linkage to essential hypertension and systolic and diastolic blood pressures. The segment of this region of ≈7 cM delineated by D5S1480 and D5S500 markers was linked to blood pressures in multipoint analysis. In 2-point analysis, D5S1480—the marker in close proximity to β 2 -adrenergic receptor gene—reached the maximal linkage to essential hypertension and adjusted systolic and diastolic blood pressures, implicating this gene as a positional candidate for further association studies. Arg16Gly, Gln27Glu, and Thr164Ile—3 functional single nucleotide polymorphisms within the β 2 -adrenergic receptor gene—were tested for association with essential hypertension. None of these polymorphisms showed a significant association with essential hypertension, separately or in the haplotype analysis. This study provided evidence of linkage of 5q31.1-5qter region to essential hypertension in the European population. Moreover, it implicated the chromosomal segment in close proximity to D5S1480 and D5S500. The detailed analysis of 3 single nucleotide polymorphisms does not support the role of the β 2 -adrenergic receptor gene as a major causative gene for the detected linkage.A region on human chromosome 5 (5q31.1-qter) contains several genes that encode important blood pressure regulators and thus is a good candidate for analysis of linkage and association with hypertension. We recruited 638 individuals from 212 Polish pedigrees with clustering of essential hypertension. These subjects were genotyped for 11 microsatellite markers that span this region to test for linkage to essential hypertension and systolic and diastolic blood pressures. The segment of this region of ≈7 cM delineated by D5S1480 and D5S500 markers was linked to blood pressures in multipoint analysis. In 2-point analysis, D5S1480—the marker in close proximity to &bgr;2-adrenergic receptor gene—reached the maximal linkage to essential hypertension and adjusted systolic and diastolic blood pressures, implicating this gene as a positional candidate for further association studies. Arg16Gly, Gln27Glu, and Thr164Ile—3 functional single nucleotide polymorphisms within the &bgr;2-adrenergic receptor gene—were tested for association with essential hypertension. None of these polymorphisms showed a significant association with essential hypertension, separately or in the haplotype analysis. This study provided evidence of linkage of 5q31.1-5qter region to essential hypertension in the European population. Moreover, it implicated the chromosomal segment in close proximity to D5S1480 and D5S500. The detailed analysis of 3 single nucleotide polymorphisms does not support the role of the &bgr;2-adrenergic receptor gene as a major causative gene for the detected linkage.
Hypertension | 2002
Fadi J. Charchar; Maciej Tomaszewski; Sandosh Padmanabhan; Beata Lacka; Mark N. Upton; G. C. Inglis; Niall H. Anderson; Alex McConnachie; Ewa Zukowska-Szczechowska; Władysław Grzeszczak; John M. Connell; Graham Watt; Anna F. Dominiczak
Kidney International | 1997
Krzysztof Strojek; Władysław Grzeszczak; Ewa Morawin; Miroslaw Adamski; Beata Lacka; Henryk Rudzki; Susanne Schmidt; Christine K. Keller; Eberhard Ritz
Journal of The American Society of Nephrology | 1998
Władysław Grzeszczak; Marcin J. Zychma; Beata Lacka; Ewa Zukowska-Szczechowska
Nephrology Dialysis Transplantation | 2000
Marcin J. Zychma; Ewa Zukowska-Szczechowska; Beata Lacka; Władysław Grzeszczak
Hypertension | 2005
Maciej Tomaszewski; Fadi J. Charchar; Njr Brain; Lynch; Wys Wang; Beata Lacka; M Gawron-Kiszka; Wai Kwong Lee; Władysław Grzeszczak; Ewa Zukowska-Szczechowska; Christine Maric; Anna F. Dominiczak