Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beata Nowicka-Sans is active.

Publication


Featured researches published by Beata Nowicka-Sans.


Journal of Virology | 2006

Envelope Conformational Changes Induced by Human Immunodeficiency Virus Type 1 Attachment Inhibitors Prevent CD4 Binding and Downstream Entry Events

Hsu-Tso Ho; Li Fan; Beata Nowicka-Sans; Brian McAuliffe; Chang-Ben Li; Gregory Yamanaka; Nannan Zhou; Hua Fang; Ira B. Dicker; Richard A. Dalterio; Yi-Fei Gong; Tao Wang; Zhiwei Yin; Yasutsugu Ueda; John D. Matiskella; John F. Kadow; Paul R. Clapham; James Robinson; Richard J. Colonno; Pin-Fang Lin

ABSTRACT BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.


Journal of Medicinal Chemistry | 2009

Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 5. An evolution from indole to azaindoles leading to the discovery of 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a drug candidate that demonstrates antiviral activity in HIV-1-infected subjects.

Tao Wang; Zhiwei Yin; Zhongxing Zhang; John A. Bender; Zhong Yang; Graham Johnson; Zheng Yang; Lisa Zadjura; Celia D’Arienzo; Dawn D. Parker; Christophe Gesenberg; Gregory Yamanaka; Yi-Fei Gong; Hsu-Tso Ho; Hua Fang; Nannan Zhou; Brian McAuliffe; Betsy J. Eggers; Li Fan; Beata Nowicka-Sans; Ira B. Dicker; Qi Gao; Richard J. Colonno; Pin-Fang Lin; Nicholas A. Meanwell; John F. Kadow

Azaindole derivatives derived from the screening lead 1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione (1) were prepared and characterized to assess their potential as inhibitors of HIV-1 attachment. Systematic replacement of each of the unfused carbon atoms in the phenyl ring of the indole moiety by a nitrogen atom provided four different azaindole derivatives that displayed a clear SAR for antiviral activity and all of which displayed marked improvements in pharmaceutical properties. Optimization of these azaindole leads resulted in the identification of two compounds that were advanced to clinical studies: (R)-1-(4-benzoyl-2-methylpiperazin-1-yl)-2-(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)ethane-1,2-dione (BMS-377806, 3) and 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043, 4). In a preliminary clinical study, 4 administered as monotherapy for 8 days, reduced viremia in HIV-1-infected subjects, providing proof of concept for this mechanistic class.


Antimicrobial Agents and Chemotherapy | 2012

In vitro antiviral characteristics of HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068

Beata Nowicka-Sans; Yi-Fei Gong; Brian McAuliffe; Ira B. Dicker; Hsu-Tso Ho; Nannan Zhou; Betsy J. Eggers; Pin-Fang Lin; Neelanjana Ray; Megan Wind-Rotolo; Li Zhu; Antara Majumdar; David Stock; Max Lataillade; George J. Hanna; John D. Matiskella; Yasutsugu Ueda; Tao Wang; John F. Kadow; Nicholas A. Meanwell; Mark Krystal

ABSTRACT BMS-663068 is the phosphonooxymethyl prodrug of BMS-626529, a novel small-molecule attachment inhibitor that targets HIV-1 gp120 and prevents its binding to CD4+ T cells. The activity of BMS-626529 is virus dependent, due to heterogeneity within gp120. In order to better understand the anti-HIV-1 spectrum of BMS-626529 against HIV-1, in vitro activities against a wide variety of laboratory strains and clinical isolates were determined. BMS-626529 had half-maximal effective concentration (EC50) values of <10 nM against the vast majority of viral isolates; however, susceptibility varied by >6 log10, with half-maximal effective concentration values in the low pM range against the most susceptible viruses. The in vitro antiviral activity of BMS-626529 was generally not associated with either tropism or subtype, with few exceptions. Measurement of the binding affinity of BMS-626529 for purified gp120 suggests that a contributory factor to its inhibitory potency may be a relatively long dissociative half-life. Finally, in two-drug combination studies, BMS-626529 demonstrated additive or synergistic interactions with antiretroviral drugs of different mechanistic classes. These results suggest that BMS-626529 should be active against the majority of HIV-1 viruses and support the continued clinical development of the compound.


Antimicrobial Agents and Chemotherapy | 2008

Entecavir Exhibits Inhibitory Activity against Human Immunodeficiency Virus under Conditions of Reduced Viral Challenge

Pin-Fang Lin; Beata Nowicka-Sans; Brian Terry; Sharon Zhang; Chunfu Wang; Li Fan; Ira B. Dicker; Volodymyr Gali; Helen Higley; Neil T. Parkin; Daniel J. Tenney; Mark Krystal; Richard J. Colonno

ABSTRACT Entecavir (ETV) was developed for the treatment of chronic hepatitis B virus (HBV) infection and is globally approved for that indication. Initial preclinical studies indicated that ETV had no significant activity against human immunodeficiency virus type 1 (HIV-1) in cultured cell lines at physiologically relevant ETV concentrations, using traditional anti-HIV assays. In response to recent clinical observations of anti-HIV activity of ETV in HIV/HBV-coinfected patients not receiving highly active antiretroviral therapy (HAART), additional investigative studies were conducted to expand upon earlier results. An extended panel of HIV-1 laboratory and clinical strains and cell types was tested against ETV, along with a comparison of assay methodologies and resistance profiling. These latest studies confirmed that ETV has only weak activity against HIV, using established assay systems. However, a >100-fold enhancement of antiviral activity (equivalent to the antiviral activity of lamivudine) could be obtained when assay conditions were modified to reduce the initial viral challenge. Also, the selection of a M184I virus variant during the passage of HIV-1 at high concentrations of ETV confirmed that ETV can exert inhibitory pressure on the virus. These findings may have a significant impact on how future assays are performed with compounds to be used in patients infected with HIV. These results support the recommendation that ETV therapy should be administered in concert with HAART for HIV/HBV-coinfected patients.


Antimicrobial Agents and Chemotherapy | 2016

Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage

Beata Nowicka-Sans; Tricia Protack; Zeyu Lin; Zhufang Li; Sharon Zhang; Yongnian Sun; Himadri Samanta; Brian Terry; Zheng Liu; Yan Chen; Ny Sin; Sing-Yuen Sit; Jacob Swidorski; Jie Chen; Brian Lee Venables; Matthew D. Healy; Nicholas A. Meanwell; Mark Cockett; Umesh Hanumegowda; Alicia Regueiro-Ren; Mark Krystal; Ira B. Dicker

ABSTRACT BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1 activity and a greatly improved preclinical profile compared to that of bevirimat.


Journal of Antimicrobial Chemotherapy | 2014

Genotypic correlates of susceptibility to HIV-1 attachment inhibitor BMS-626529, the active agent of the prodrug BMS-663068

Nannan Zhou; Beata Nowicka-Sans; Brian McAuliffe; Neelanjana Ray; Betsy J. Eggers; Hua Fang; Li Fan; Matthew D. Healy; David R. Langley; Carey Hwang; Max Lataillade; George J. Hanna; Mark Krystal

OBJECTIVES In an 8 day monotherapy study of subjects infected with HIV-1 (subtype B) (NCT01009814), BMS-626529 (an attachment inhibitor that binds to HIV-1 envelope glycoprotein gp120), administered as the prodrug BMS-663068, produced substantial declines in plasma HIV-1 RNA. However, large variability in susceptibility to BMS-626529 was noted and virus with low susceptibility was less likely to be suppressed by BMS-663068 administration. The current analysis sought to investigate the genotypic correlates of susceptibility to BMS-626529. METHODS In vitro selection experiments, evaluation of clinical samples of subtype B from the monotherapy study and evaluation of intrinsically resistant subtype AE viruses were conducted. Reverse genetics was used to identify key substitutions in envelope clones responsible for reduced susceptibility. RESULTS An M426L or S375M change were the major substitutions associated with reductions in susceptibility to BMS-626529 in baseline samples of subtype B viruses from the monotherapy study, with M434I and M475I contributing to a lesser extent. Class resistance in subtype AE viruses was mapped to 375H and 475I substitutions, found in the vast majority of these viruses. Analysis of multiple envelope clones from infected subjects showed higher intrasubject variability in susceptibility to BMS-626529 compared with other classes of entry inhibitors. CONCLUSIONS These data define key genotypic substitutions in HIV-1 gp120 that could confer phenotypic resistance to BMS-626529.


ACS Medicinal Chemistry Letters | 2016

Discovery of BMS-955176, a Second Generation HIV-1 Maturation Inhibitor with Broad Spectrum Antiviral Activity

Alicia Regueiro-Ren; Zheng Liu; Yan Chen; Ny Sin; Sing-Yuen Sit; Jacob Swidorski; Jie Chen; Brian Lee Venables; Juliang Zhu; Beata Nowicka-Sans; Tricia Protack; Zeyu Lin; Brian Terry; Himadri Samanta; Sharon Zhang; Zhufang Li; Brett R. Beno; Xiaohua S. Huang; Sandhya Rahematpura; Dawn D. Parker; Roy Haskell; Susan R. Jenkins; Kenneth S. Santone; Mark Cockett; Mark Krystal; Nicholas A. Meanwell; Umesh Hanumegowda; Ira B. Dicker

HIV-1 maturation inhibition (MI) has been clinically validated as an approach to the control of HIV-1 infection. However, identifying an MI with both broad polymorphic spectrum coverage and good oral exposure has been challenging. Herein, we describe the design, synthesis, and preclinical characterization of a potent, orally active, second generation HIV-1 MI, BMS-955176 (2), which is currently in Phase IIb clinical trials as part of a combination antiretroviral regimen.


Antimicrobial Agents and Chemotherapy | 2013

In Vitro Cross-Resistance Profile of Nucleoside Reverse Transcriptase Inhibitor (NRTI) BMS-986001 against Known NRTI Resistance Mutations

Zhufang Li; Brian Terry; William Olds; Tricia Protack; Carol Deminie; B Minassian; Beata Nowicka-Sans; Yongnian Sun; Ira B. Dicker; Carey Hwang; Max Lataillade; George J. Hanna; Mark Krystal

ABSTRACT BMS-986001 is a novel HIV nucleoside reverse transcriptase inhibitor (NRTI). To date, little is known about its resistance profile. In order to examine the cross-resistance profile of BMS-986001 to NRTI mutations, a replicating virus system was used to examine specific amino acid mutations known to confer resistance to various NRTIs. In addition, reverse transcriptases from 19 clinical isolates with various NRTI mutations were examined in the Monogram PhenoSense HIV assay. In the site-directed mutagenesis studies, a virus containing a K65R substitution exhibited a 0.4-fold change in 50% effective concentration (EC50) versus the wild type, while the majority of viruses with the Q151M constellation (without M184V) exhibited changes in EC50 versus wild type of 0.23- to 0.48-fold. Susceptibility to BMS-986001 was also maintained in an L74V-containing virus (0.7-fold change), while an M184V-only-containing virus induced a 2- to 3-fold decrease in susceptibility. Increasing numbers of thymidine analog mutation pattern 1 (TAM-1) pathway mutations correlated with decreases in susceptibility to BMS-986001, while viruses with TAM-2 pathway mutations exhibited a 5- to 8-fold decrease in susceptibility, regardless of the number of TAMs. A 22-fold decrease in susceptibility to BMS-986001 was observed in a site-directed mutant containing the T69 insertion complex. Common non-NRTI (NNRTI) mutations had little impact on susceptibility to BMS-986001. The results from the site-directed mutants correlated well with the more complicated genotypes found in NRTI-resistant clinical isolates. Data from clinical studies are needed to determine the clinically relevant resistance cutoff values for BMS-986001.


Virology | 2010

Increased sensitivity of HIV variants selected by attachment inhibitors to broadly neutralizing antibodies.

Nannan Zhou; Li Fan; Hsu-Tso Ho; Beata Nowicka-Sans; Yongnian Sun; Yingjie Zhu; Yanhua Hu; Brian McAuliffe; Burt Rose; Hua Fang; Tao Wang; John F. Kadow; Mark Krystal; Louis Alexander; Richard J. Colonno; Pin-Fang Lin

Treatment with HIV attachment inhibitors (AIs) can select for escape mutants throughout the viral envelope. We report on three such mutations: F423Y (gp120 CD4 binding pocket) and I595F and K655E (gp41 ectodomain). Each displayed decreased sensitivity to the AI BMS-488043 and earlier generation AIs, along with increased sensitivity to the broadly neutralizing antibodies 2F5 and 4E10, without affecting the rate of viral entry or sensitivity to the entry inhibitors AMD-3100 and Enfuvirtide. We also observed that I595F did not substantially increase envelope sensitivity to HIV-infected patient sera. Based on these observations, we propose that although F423Y, I595F and K655E may all affect the presentation of the 2F5 and 4E10 epitopes, natural immune mimicry is rare only for the I595F effect. Thus, it seems that in addition to restricting AI resistance development, incorporation of I595F into an appropriate vehicle could elicit a novel antiviral response to improve vaccine efficacy.


Bioorganic & Medicinal Chemistry Letters | 2016

Inhibitors of HIV-1 maturation: Development of structure–activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids

Jacob Swidorski; Zheng Liu; Sing-Yuen Sit; Jie Chen; Yan Chen; Ny Sin; Brian Lee Venables; Dawn D. Parker; Beata Nowicka-Sans; Brian Terry; Tricia Protack; Sandhya Rahematpura; Umesh Hanumegowda; Susan Jenkins; Mark Krystal; Ira B. Dicker; Nicholas A. Meanwell; Alicia Regueiro-Ren

We have recently reported on the discovery of a C-3 benzoic acid (1) as a suitable replacement for the dimethyl succinate side chain of bevirimat (2), an HIV-1 maturation inhibitor that reached Phase II clinical trials before being discontinued. Recent SAR studies aimed at improving the antiviral properties of 2 have shown that the benzoic acid moiety conferred topographical constraint to the pharmacophore and was associated with a lower shift in potency in the presence of human serum albumin. In this manuscript, we describe efforts to improve the polymorphic coverage of the C-3 benzoic acid chemotype through modifications at the C-28 position of the triterpenoid core. The dimethylaminoethyl amides 17 and 23 delivered improved potency toward bevirimat-resistant viruses while increasing C24 in rat oral PK studies.

Collaboration


Dive into the Beata Nowicka-Sans's collaboration.

Top Co-Authors

Avatar

Mark Krystal

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge