Beata Zawisza
University of Silesia in Katowice
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beata Zawisza.
Dalton Transactions | 2013
Rafal Sitko; Edyta Turek; Beata Zawisza; E. Malicka; E. Talik; J. Heimann; Anna Gagor; Barbara Feist; Roman Wrzalik
The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR). The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3-7 for Cu(II), 5-8 for Zn(II), 4-8 for Cd(II), 3-7 for Pb(II). The maximum adsorption capacities of Cu(II), Zn(II), Cd(II) and Pb(II) on GO at pH = 5 are 294, 345, 530, 1119 mg g(-1), respectively. The competitive adsorption experiments showed the affinity in the order of Pb(II) > Cu(II) ≫ Cd(II) > Zn(II). Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO. Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions. The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions. After adsorption, the tendency to agglomerate and precipitate is observed. Excellent dispersibility of GO and strong tendency of GO-Me(II) to precipitate open the path to removal of heavy metals from water solution. Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents.
Analytical Chemistry | 2015
Rafal Sitko; Paulina Janik; Beata Zawisza; E. Talik; Eva Marguí; I. Queralt
A new method based on dispersive microsolid phase extraction (DMSPE) and total-reflection X-ray fluorescence spectrometry (TXRF) is proposed for multielemental ultratrace determination of heavy metal ions and arsenic species. In the developed methodology, the crucial issue is a novel adsorbent synthesized by grafting 3-mercaptopropyl trimethoxysilane on a graphene oxide (GO) surface. Mercapto-modified graphene oxide (GO-SH) can be applied in quantitative adsorption of cobalt, nickel, copper, cadmium, and lead ions. Moreover, GO-SH demonstrates selectivity toward arsenite in the presence of arsenate. Due to such features of GO-SH nanosheets as wrinkled structure and excellent dispersibility in water, GO-SH seems to be ideal for fast and simple preconcentration and determination of heavy metal ions using methodology based on DMSPE and TXRF measurement. The suspension of GO-SH was injected into an analyzed water sample; after filtration, the GO-SH nanosheets with adsorbed metal ions were redispersed in a small volume of internal standard solution and deposited onto a quartz reflector. The high enrichment factor of 150 allows obtaining detection limits of 0.11, 0.078, 0.079, 0.064, 0.054, and 0.083 ng mL(-1) for Co(II), Ni(II), Cu(II), As(III), Cd(II), and Pb(II), respectively. Such low detection limits can be obtained using a benchtop TXRF system without cooling media and gas consumption. The method is suitable for the analysis of water, including high salinity samples difficult to analyze using other spectroscopy techniques. Moreover, GO-SH can be applied to the arsenic speciation due to its selectivity toward arsenite.
Journal of Analytical Atomic Spectrometry | 2011
Beata Zawisza; Katarzyna Pytlakowska; Barbara Feist; Marzena Polowniak; Andrzej Kita; Rafal Sitko
An overview of publications focussed on the period since 2000 and outlining modern methods of sample preparation as well as advanced techniques for determination of rare earth elements (REE) in various matrices is presented in this paper. The review discusses the problems of REE determination in diverse samples i.e. from biological through environmental and geological to advanced materials. The preferable procedure of sample digestion and the most frequently applied methods of sample preparation for determination of trace elements are discussed in this paper. The case of direct analysis of samples for REE determination is also discussed. The review outlines determination of REE employing many techniques such as, inter alia, flame or graphite furnace atomic absorption spectrometry, atomic absorption with chemical vapor generation, X-ray fluorescence spectrometry, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and neutron activation analysis. This article summarizes and classifies materials in which rare earth elements are present, main places of their occurrence and the methods of their analysis.
Journal of Analytical Atomic Spectrometry | 2013
Karina Kocot; Beata Zawisza; Eva Marguí; I. Queralt; Manuela Hidalgo; Rafal Sitko
In this paper the combination of dispersive micro solid-phase extraction (DMSPE), using multiwalled carbon nanotubes (MWCNTs) as solid sorbents, with total-reflection X-ray fluorescence spectrometry (TXRF) is proposed for preconcentration and determination of lead and cadmium ions in water samples. The proposed sample preparation is quite simple and economic. After the sorption processes of the metals on the MWCNTs, the aqueous sample is separated by centrifugation and the metal loaded MWCNTs are suspended using a small volume of an internal standard solution and analyzed directly by TXRF. Parameters affecting the extraction process (complexing agent, pH of the aqueous sample, amount of MWCNTs) and TXRF analysis (volume of the deposited suspension on the reflector, drying mode, and instrumental parameters) have been carefully evaluated to test the real capability of the developed methodology for the determination of Cd and Pb at trace levels. For both elements the linear range is observed up to 50 ng mL−1. Under optimized conditions detection limits are 1.0 ng mL−1 and 2.1 ng mL−1 for Cd(II) and Pb(II) ions, respectively. Both of the examined elements can be determined with quantitative recoveries (ca. 100%) and with an adequate precision (RSD = 6.0% and 10.5% for Cd(II) and Pb(II), respectively). Our results give insight into the possibilities of the combination of DMSPE and TXRF for trace metal determination in different types of environmental waters (sea, river and waste water).
Analytical Methods | 2013
Beata Zawisza; Rafal Sitko; E. Malicka; E. Talik
A new method for sample preparation using graphene oxide (GO) as a novel sorbent was developed for the preconcentration of trace amounts of Co(II), Ni(II), Cu(II), Zn(II) and Pb(II). The proposed preconcentration procedure is based on dispersive micro-solid phase extraction (DMSPE). It means that GO was dispersed in aqueous samples containing trace elements to be determined. During the stirring of the analyte solution containing the GO suspension, metal ions were sorbed by GO. After the sorption, the solution was filtered under vacuum and GO with the metal ions was collected onto a membrane filter. The obtained samples were analyzed directly by energy-dispersive X-ray fluorescence spectrometry (EDXRF). The parameters affecting the extraction and preconcentration process were optimized. The pH of the analyte solution, the amount of GO, the sample volume, the contact time between analytes and sorbent (stirring time), and the effects of foreign metals are discussed in detail in this paper. The proposed procedure allows us to obtain the detection limits of 0.5, 0.7, 1.5, 1.8 and 1.4 ng mL−1 for Co(II), Ni(II), Cu(II), Zn(II) and Pb(II), respectively. The linearity of the method is in the range of 5–100 ng mL−1. The proposed method was successfully applied in the analysis of water. The accuracy of the method was verified using spiked samples and inductively coupled plasma optical emission spectrometry (ICP-OES) as a comparative technique. The recoveries over the range of 94–106% were obtained. This paper shows the great potential of GO as an excellent sorbent in the preconcentration field of analytical chemistry. The proposed method meets green chemistry rules.
Talanta | 2012
Beata Zawisza; Robert Skorek; Grazyna Stankiewicz; Rafal Sitko
The preconcentration of trace elements on multiwalled carbon nanotubes (MWCNTs) followed by a wavelength-dispersive X-ray fluorescence analysis (WDXRF) has been investigated. The proposed preconcentration procedure is based on the sorption of trace elements on MWCNTs dispersed in analyzed solution. After sorption, the MWCNTs with the metal ions were collected onto the filter, and then the preconcentrated elements were determined directly by WDXRF. The preconcentration method was optimized, and in consequence, in order to obtain satisfactory recoveries using 100 mL of samples, the sorption process was performed with 1mg of MWCNTs within 5 min. Some conditions of the preconcentration process such as the pH of analyte solution, amounts of MWCNTs, the volume of the sample, the contact time between analytes and MWCNTs (stirring time), and the effects of foreign metals are discussed in detail in the paper. Adsorption onto raw and oxidized MWCNTs was also studied. The proposed procedure allows obtaining the detection limits of 0.6, 0.6, 1.0, 0.7, 0.6, 0.5, 0.9 and 1.9 ng mL(-1) for Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pb(II), respectively. The recoveries of determined elements were about 100%. Because the analytes are not eluted from the sorbent before WDXRF analysis, the risk of contamination and loss of analytes is reduced to minimum. Moreover, because the samples are analyzed as a thin layer, the matrix effects can be neglected. The proposed preconcentration method using MWCNTs coupled with WDXRF spectrometry was successfully applied to determine trace elements in natural water samples.
Analytica Chimica Acta | 2014
Rafal Sitko; Beata Zawisza; E. Talik; Paulina Janik; Grzegorz Osoba; Barbara Feist; E. Malicka
Graphene oxide (GO) is a novel material with excellent adsorptive properties. However, the very small particles of GO can cause serious problems is solid-phase extraction (SPE) such as the high pressure in SPE system and the adsorbent loss through pores of frit. These problems can be overcome by covalently binding GO nanosheets to a support. In this paper, GO was covalently bonded to spherical silica by coupling the amino groups of spherical aminosilica and the carboxyl groups of GO (GO@SiO2). The successful immobilization of GO nanosheets on the aminosilica was confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. The spherical particle covered by GO with crumpled silk wave-like carbon sheets are an ideal sorbent for SPE of metal ions. The wrinkled structure of the coating results in large surface area and a high extractive capacity. The adsorption bath experiment shows that Cu(II) and Pb(II) can be quantitatively adsorbed at pH 5.5 with maximum adsorption capacity of 6.0 and 13.6 mg g(-1), respectively. Such features of GO nanosheets as softness and flexibility allow achieving excellent contact with analyzed solution in flow-rate conditions. In consequence, the metal ions can be quantitatively preconcentrated from high volume of aqueous samples with excellent flow-rate. SPE column is very stable and several adsorption-elution cycles can be performed without any loss of adsorptive properties. The GO@SiO2 was used for analysis of various water samples by flame atomic absorption spectrometry with excellent enrichment factors (200-250) and detection limits (0.084 and 0.27 ng mL(-1) for Cu(II) and Pb(II), respectively).
Journal of Analytical Atomic Spectrometry | 2012
Robert Skorek; Edyta Turek; Beata Zawisza; Eva Marguí; I. Queralt; Marek Stempin; Piotr Kucharski; Rafal Sitko
A dispersive solid-phase microextraction (DSPME) with multiwalled carbon nanotubes (MWCNTs) as solid sorbent and ammonium pyrrolidinedithiocarbamate (APDC) as chelating agent was developed for determination of selenium. In the proposed procedure, the Se(IV)–APDC complex is adsorbed on MWCNTs dispersed in aqueous samples. After the adsorption process, the aqueous samples are filtered and MWCNTs with selenium chelate are collected onto a filter. The loaded filters are directly measured using X-ray fluorescence (XRF) spectrometry. In order to obtain high recovery of the Se ions on MWCNTs, the proposed procedure was optimized for various analytical parameters such as pH, amounts of MWCNTs and APDC, sample volume and time of the sorption process. Under optimized conditions Se ions can be determined with very good recovery (97 ± 3%), precision (RSD = 3.2%) and detection limits (from 0.06 to 0.2 ng mL−1, depending on counting time and XRF equipment). The effect of common coexisting ions was also investigated. Se(IV) can be determined in the presence of heavy metal ions and alkali metals. The chemical interferences observed for high concentrations of Cu(II), Fe(III), and Zn(II) can be completely eliminated using precipitation with NaOH. The proposed method was applied for the determination of Se in mineral water and biological samples (Lobster Hepatopancreas). The proposed method can also be applied for selenium speciation. The concentration of selenate can be obtained as the difference between the concentration of selenite after and before prereduction of selenate to selenite.
Journal of Analytical Atomic Spectrometry | 2011
Rafal Sitko; Karina Kocot; Beata Zawisza; Barbara Feist; Katarzyna Pytlakowska
In recent years, liquid-phase microextraction (LPME) has become one of the most valuable techniques for the preconcentration and separation of trace and ultratrace elements. LPME can be combined with an atomic technique which requires only a few microlitres of liquid to perform a measurement, e.g. electrothermal atomic absorption spectrometry. In this study, combining LPME with X-ray fluorescence spectrometry (XRF), a dried-spot technique is proposed. Since the X-ray beam can be focused on a small spot size and simultaneously LPME produces a very small drop of a volume ranging from 2 to 30 μL, the combination of these two techniques is a very promising tool for multielement trace and ultratrace analyses. The present research was performed using dispersive liquid–liquid microextraction (DLLME) with APDC as a chelating agent. Nevertheless, any LPME technique, e.g. single-drop microextraction (SDME), can be applied in combination with XRF. Because XRF measurement follows the microextraction, deposition and drying of the small drop, the influence of the diameter of the dried residue on the intensity of fluorescent radiation is discussed in detail. Pipetting and spray-on techniques are proposed for the deposition of the small drop onto the substrate (membrane filter or Mylar foil). Under the optimized conditions, the detection limits were 2.8, 1.6, 2.5, 1.7, 2.1 and 4.1 ng mL−1 for Fe, Co, Zn, Ga, Se and Pb, respectively, with a preconcentration factor of 250 for 5 mL of the water sample.
RSC Advances | 2016
Rafal Sitko; Marcin Musielak; Beata Zawisza; E. Talik; Anna Gagor
In this paper, graphene oxide/cellulose membranes were prepared in order to perform effective adsorption of heavy metal ions: cobalt, nickel, copper, zinc, cadmium and lead. Two types of membranes were fabricated, i.e. pressed and non-pressed membranes. The experiment showed that the pressed membranes are highly durable at different pH values, even in basic solutions, and they can be applied in separation/removal of heavy metal ions during vigorous shaking in the aqueous solution. The non-pressed membranes were proved to be less stable, however, they can be successfully applied in the filtration process at the high flow-rates. The results of the batch experiments and the measurements by the inductively coupled plasma atomic emission spectroscopy (ICP-OES) indicated that the maximum adsorption can be achieved at pH 4–8. Adsorption isotherms and kinetic studies indicated that the sorption of the metal ions on the membranes occurs in a monolayer coverage, hence it is controlled by the chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of graphene oxide. The maximum adsorption capacity values of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) on the graphene oxide/cellulose membranes at the pH of 4.5 are 15.5, 14.3, 26.6, 16.7, 26.8, 107.9 mg g−1, respectively. The competitive adsorption experiments showed the affinities of prepared membranes for the metal ions in the order of Pb > Cu > Cd > Zn ≥ Ni ≥ Co. The affinity order agrees with the first stability constant of the associated metal hydroxide and acetate. The adsorption properties of the graphene oxide/cellulose membranes, their reusability (more than 10 cycles) and durability in the aqueous solutions open the path to removal of heavy metals from water solution. The membranes can be also used in the field of analytical chemistry for the preconcentration and/or separation of trace and ultratrace metal ions.