Beate Henrichfreise
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beate Henrichfreise.
Antimicrobial Agents and Chemotherapy | 2007
Beate Henrichfreise; Irith Wiegand; W. Pfister; Bernd Wiedemann
ABSTRACT In this study, we analyzed the mechanisms of multiresistance for 22 clinical multiresistant and clonally different Pseudomonas aeruginosa strains from Germany. Twelve and 10 strains originated from cystic fibrosis (CF) and non-CF patients, respectively. Overproduction of the efflux systems MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM was studied. Furthermore, loss of OprD, alterations in type II topoisomerases, AmpC overproduction, and the presence of 25 acquired resistance determinants were investigated. The presence of a hypermutation phenotype was also taken into account. Besides modifications in GyrA (91%), the most frequent mechanisms of resistance were MexXY-OprM overproduction (82%), OprD loss (82%), and AmpC overproduction (73%). Clear differences between strains from CF and non-CF patients were found: numerous genes coding for aminoglycoside-modifying enzymes and located, partially in combination with β-lactamase genes, in class 1 integrons were found only in strains from non-CF patients. Furthermore, multiple modifications in type II topoisomerases conferring high quinolone resistance levels and overexpression of MexAB-OprM were exclusively detected in multiresistant strains from non-CF patients. Correlations of the detected phenotypes and resistance mechanisms revealed a great impact of efflux pump overproduction on multiresistance in P. aeruginosa. Confirming previous studies, we found that additional, unknown chromosomally mediated resistance mechanisms remain to be determined. In our study, 11 out of 12 strains and 3 out of 10 strains from CF patients and non-CF patients, respectively, were hypermutable. This extremely high proportion of mutator strains should be taken into consideration for the treatment of multiresistant P. aeruginosa.
Molecular Microbiology | 2009
Beate Henrichfreise; Andrea Schiefer; Tanja Schneider; Edith Nzukou; Christina Poellinger; Theo-Julian Hoffmann; Kelly L. Johnston; Katja Moelleken; Imke Wiedemann; Kenneth Pfarr; Achim Hoerauf; Hans-Georg Sahl
Cell division and cell wall biosynthesis in prokaryotes are driven by partially overlapping multiprotein machineries whose activities are tightly controlled and co‐ordinated. So far, a number of protein components have been identified and acknowledged as essential for both fundamental cellular processes. Genes for enzymes of both machineries have been found in the genomes of the cell wall‐less genera Chlamydia and Wolbachia, raising questions as to the functionality of the lipid II biosynthesis pathway and reasons for its conservation. We provide evidence on three levels that the lipid II biosynthesis pathway is indeed functional and essential in both genera: (i) fosfomycin, an inhibitor of MurA, catalysing the initial reaction in lipid II biosynthesis, has a detrimental effect on growth of Wolbachia cells; (ii) isolated cytoplasmic membranes from Wolbachia synthesize lipid II ex vivo; and (iii) recombinant MraY and MurG from Chlamydia and Wolbachia exhibit in vitro activity, synthesizing lipid I and lipid II respectively. We discuss the hypothesis that the necessity for maintaining lipid II biosynthesis in cell wall‐lacking bacteria reflects an essential role of the precursor in prokaryotic cell division. Our results also indicate that the lipid II pathway may be exploited as an antibacterial target for chlamydial and filarial infections.
Antimicrobial Agents and Chemotherapy | 2005
Beate Henrichfreise; Irith Wiegand; Kimberley Jane Sherwood; Bernd Wiedemann
The emergence of metallo-β-lactamase (MBL)-producing pathogens is an increasing therapeutic problem. These enzymes have a broad-substrate spectrum; they hydrolyze all β-lactams except for the monobactam aztreonam. At the present time, there is no clinically useful inhibitor available. Four
PLOS ONE | 2011
Ahmed Gaballah; Anna Kloeckner; Christian Otten; Hans-Georg Sahl; Beate Henrichfreise
In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.
Journal of Biological Chemistry | 2016
Erik Henrich; Yi Ma; Ina Engels; Daniela Münch; Christian Otten; Tanja Schneider; Beate Henrichfreise; Hans-Georg Sahl; Volker Dötsch; Frank Bernhard
Screening of new compounds directed against key protein targets must continually keep pace with emerging antibiotic resistances. Although periplasmic enzymes of bacterial cell wall biosynthesis have been among the first drug targets, compounds directed against the membrane-integrated catalysts are hardly available. A promising future target is the integral membrane protein MraY catalyzing the first membrane associated step within the cytoplasmic pathway of bacterial peptidoglycan biosynthesis. However, the expression of most MraY homologues in cellular expression systems is challenging and limits biochemical analysis. We report the efficient production of MraY homologues from various human pathogens by synthetic cell-free expression approaches and their subsequent characterization. MraY homologues originating from Bordetella pertussis, Helicobacter pylori, Chlamydia pneumoniae, Borrelia burgdorferi, and Escherichia coli as well as Bacillus subtilis were co-translationally solubilized using either detergent micelles or preformed nanodiscs assembled with defined membranes. All MraY enzymes originating from Gram-negative bacteria were sensitive to detergents and required nanodiscs containing negatively charged lipids for obtaining a stable and functionally folded conformation. In contrast, the Gram-positive B. subtilis MraY not only tolerates detergent but is also less specific for its lipid environment. The MraY·nanodisc complexes were able to reconstitute a complete in vitro lipid I and lipid II forming pipeline in combination with the cell-free expressed soluble enzymes MurA-F and with the membrane-associated protein MurG. As a proof of principle for future screening platforms, we demonstrate the inhibition of the in vitro lipid II biosynthesis with the specific inhibitors fosfomycin, feglymycin, and tunicamycin.
Antimicrobial Agents and Chemotherapy | 2007
Beate Henrichfreise; Irith Wiegand; Ingeborg Luhmer-Becker; Bernd Wiedemann
ABSTRACT In this study we investigated the interplay of antibiotic pharmacokinetic profiles and the development of mutation-mediated resistance in wild-type and hypermutable Pseudomonas aeruginosa strains. We used in vitro models simulating profiles of the commonly used therapeutic drugs meropenem and ceftazidime, two agents with high levels of antipseudomonal activity said to have different potentials for stimulating resistance development. During ceftazidime treatment of the wild-type strain (PAO1), fully resistant mutants overproducing AmpC were selected rapidly and they completely replaced wild-type cells in the population. During treatment with meropenem, mutants of PAO1 were not selected as rapidly and showed only intermediate resistance due to the loss of OprD. These mutants also replaced the parent strain in the population. During the treatment of the mutator P. aeruginosa strain with meropenem, the slowly selected mutants did not accumulate several resistance mechanisms but only lost OprD and did not completely replace the parent strain in the population. Our results indicate that the commonly used dosing regimens for meropenem and ceftazidime cannot avoid the selection of mutants of wild-type and hypermutable P. aeruginosa strains. For the treatment outcome, including the prevention of resistance development, it would be beneficial for the antibiotic concentration to remain above the mutant prevention concentration for a longer period of time than it does in present regimens.
Nature Communications | 2014
Anna Klöckner; Christian Otten; Adeline Derouaux; Waldemar Vollmer; Henrike Bühl; Stephania De Benedetti; Daniela Münch; Michaele Josten; Katja Molleken; Hans-Georg Sahl; Beate Henrichfreise
Intracellular Chlamydiaceae do not need to resist osmotic challenges and a functional cell wall was not detected in these pathogens. Nevertheless, a recent study revealed evidence for circular peptidoglycan-like structures in Chlamydiaceae and penicillin inhibits cytokinesis, a phenomenon known as the chlamydial anomaly. Here, by characterizing a cell wall precursor-processing enzyme, we provide insights into the mechanisms underlying this mystery. We show that AmiA from Chlamydia pneumoniae separates daughter cells in an Escherichia coli amidase mutant. Contrary to homologues from free-living bacteria, chlamydial AmiA uses lipid II as a substrate and has dual activity, acting as an amidase and a carboxypeptidase. The latter function is penicillin sensitive and assigned to a penicillin-binding protein motif. Consistent with the lack of a regulatory domain in AmiA, chlamydial CPn0902, annotated as NlpD, is a carboxypeptidase, rather than an amidase activator, which is the case for E. coli NlpD. Functional conservation of AmiA implicates a role in cytokinesis and host response modulation.
Antimicrobial Agents and Chemotherapy | 2004
Michael Kresken; Beate Henrichfreise; Simone Bagel; Johannes Brauers; Bernd Wiedemann
ABSTRACT Of 595 isolates of Streptococcus pneumoniae from outpatients with respiratory tract infections, collected from 17 microbiology laboratories, 14.1% were resistant to erythromycin. Eighty-three erythromycin-resistant isolates were genetically analyzed, 83.1% of which harbored the ermB gene. Only four isolates (4.8%) harbored the mefA gene. Telithromycin exhibited potent activity against all isolates.
Frontiers in Cellular and Infection Microbiology | 2014
Stefania De Benedetti; Henrike Bühl; Ahmed Gaballah; Anna Klöckner; Christian Otten; Tanja Schneider; Hans-Georg Sahl; Beate Henrichfreise
For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly. D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L-alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.
Current Biology | 2016
Beate Henrichfreise; Melanie Brunke; Patrick H. Viollier
Peptidoglycan is an essential macromolecule that forms the bacterial cell wall. The recent discovery of new cell wall-polymerizing enzymes not only illuminates the basic biology and evolution of prokaryotes but also provides new targets for the development of antibacterials to combat drug-resistant pathogens.