Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beate Rinner is active.

Publication


Featured researches published by Beate Rinner.


Toxicology | 2009

The role of nanoparticle size in hemocompatibility

Andrea Mayer; Maria Vadon; Beate Rinner; Alexandra Novak; Reinhold Wintersteiger; Eleonore Fröhlich

It is expected that nanoparticular matters will be increasingly used for industrial and medical applications. Since it is known that nanoparticles exhibit unique and potential hazardous properties due to their small size, toxicity studies, risk assessment and risk management are of great interest. We focussed on adverse effects on human blood. Processes which warrant special attention are clotting, reactions triggering inflammatory and immune responses and hemolysis. Starting with the determination of size and surface charge in different media we assessed the effect of size and surface charge on induction of coagulation, thrombocyte activation, complement activation, granulocyte activation and hemolysis. We used polystyrene particles as model because they are available in different sizes but constant surface charges. The presence of salts and of protein in the dispersion solution increased particle size and neutralized surface charge. Positively charged particles formed aggregates in buffered solution. Interference of the particles with assays based on fluorescence associated cell sorting was identified. Positive surface charge induced activation of complement. Small size caused thrombocyte and granulocyte activation, and hemolysis. A characterization of particle size and surface charge in the solutions used for the experiments appears important for interpretation of the results. The size dependency of adverse effects in human blood is not linear; negatively charged particles larger than 60 nm hydrodynamic diameter appear to be considerably less hematotoxic than smaller ones.


Biochimica et Biophysica Acta | 2011

In search of a novel target - phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy.

Sabrina Riedl; Beate Rinner; Helmut Schaider; Sonja M. Walzer; Alexandra Novak; Karl Lohner; Dagmar Zweytick

This study was performed in the aim to identify potential targets for the development of novel therapy to treat cancer with poor outcome or treatment efficacy. We show that the negatively charged phospholipid phosphatidylserine (PS) is exposed in the outer leaflet of their plasma membrane not only in tumor cell lines, but also in metastases and primary cultures thereof, which contrasts with a lack of PS exposure by differentiated non-tumorigenic counterparts. Studied tumor cell lines were derived from non-tumorigenic and malignant melanomas, prostate- and renal cancer, glioblastoma and a rhabdomyosarcoma. Importantly, also metastases of melanoma expose PS and there is a correlation between malignancy of melanoma cell lines from different stages of tumor progression and PS exposure. The PS exposure we found was neither of apoptotic nor of experimental artificial origin. Finally potentially malignant and non-malignant cells could be differentiated by sorting of a primary cell culture derived from a glioblastoma based on PS exposure, which has so far not been possible within one culture due to lack of a specific marker. Our data provide clear evidence that PS could serve as uniform marker of tumor cells and metastases as well as a target for novel therapeutic approaches based on e.g. PS-specific host defense derived peptides.


Journal of Immunology | 2010

8-Methoxypsoralen Plus Ultraviolet A Therapy Acts via Inhibition of the IL-23/Th17 Axis and Induction of Foxp3+ Regulatory T Cells Involving CTLA4 Signaling in a Psoriasis-Like Skin Disorder

Tej Pratap Singh; Michael P. Schön; Katrin Wallbrecht; Kai Michaelis; Beate Rinner; Gerlinde Mayer; Ulrike Schmidbauer; Heimo Strohmaier; Xiao-Jing Wang; Peter Wolf

To elucidate the molecular action of 8-methoxypsoralen plus UVA (PUVA), a standard dermatological therapy, we used K5.hTGF-β1 transgenic mice exhibiting a skin phenotype and cytokine abnormalities with strong similarities to human psoriasis. We observed that impaired function of CD4+CD25+ regulatory T cells (Tregs) and increased cytokine levels of the IL-23/Th17 pathway were responsible for the psoriatic phenotype in this mouse model. Treatment of K5.hTGF-β1 transgenic mice with PUVA suppressed the IL-23/Th17 pathway, Th1 milieu, as well as transcription factors STAT3 and orphan nuclear receptor RORγt. PUVA induced the Th2 pathway and IL-10–producing CD4+CD25+Foxp3+Tregs with disease-suppressive activity that was abolished by anti-CTLA4 mAb treatment. These findings were paralleled by macroscopic and microscopic clearance of the diseased murine skin. Anti–IL-17 mAb treatment also diminished the psoriatic phenotype of the mice. This indicated that both induced Tregs involving CTLA4 signaling and inhibition of the IL-23/Th17 axis are central for the therapeutic action of PUVA.


PLOS ONE | 2012

Aldehyde Dehydrogenase 1, a Potential Marker for Cancer Stem Cells in Human Sarcoma

Birgit Lohberger; Beate Rinner; Nicole Stuendl; Markus Absenger; Bernadette Liegl-Atzwanger; Sonja M. Walzer; Reinhard Windhager; Andreas Leithner

Tumors contain a small population of cancer stem cells (CSC) proposed to be responsible for tumor maintenance and relapse. Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate CSCs in different cancer types. This study used the Aldefluor® assay and fluorescence-activated cell sorting (FACS) analysis to isolate ALDH1high cells from five human sarcoma cell lines and one primary chordoma cell line. ALDH1high cells range from 0.3% (MUG-Chor1) to 4.1% (SW-1353) of gated cells. Immunohistochemical staining, analysis of the clone formation efficiency, and xCELLigence microelectronic sensor technology revealed that ALDH1high cells from all sarcoma cell lines have an increased proliferation rate compared to ALDH1low cells. By investigating of important regulators of stem cell biology, real-time RT-PCR data showed an increased expression of c-Myc, β-catenin, and SOX-2 in the ALDH1high population and a significant higher level of ABCG2. Statistical analysis of data demonstrated that ALDH1high cells of SW-982 and SW-1353 showed higher resistance to commonly used chemotherapeutic agents like doxorubicin, epirubicin, and cisplatin than ALDH1low cells. This study demonstrates that in different sarcoma cell lines, high ALDH1 activity can be used to identify a subpopulation of cells characterized by a significantly higher proliferation rate, increased colony forming, increased expression of ABC transporter genes and stemness markers compared to control cells. In addition, enhanced drug resistance was demonstrated.


Oncogene | 2015

A stress-induced early innate response causes multidrug tolerance in melanoma

D. Ravindran Menon; Sajal Kumar Das; Clemens Krepler; Adina Vultur; Beate Rinner; Silvia Schauer; Karl Kashofer; Karin Wagner; Gao Zhang; E. Bonyadi Rad; Nikolas K. Haass; Hp Soyer; Brian Gabrielli; Rajasekharan Somasundaram; Gerald Hoefler; Meenhard Herlyn; Helmut Schaider

Acquired drug resistance constitutes a major challenge for effective cancer therapies with melanoma being no exception. The dynamics leading to permanent resistance are poorly understood but are important to design better treatments. Here we show that drug exposure, hypoxia or nutrient starvation leads to an early innate cell response in melanoma cells resulting in multidrug resistance, termed induced drug-tolerant cells (IDTCs). Transition into the IDTC state seems to be an inherent stress reaction for survival toward unfavorable environmental conditions or drug exposure. The response comprises chromatin remodeling, activation of signaling cascades and markers implicated in cancer stemness with higher angiogenic potential and tumorigenicity. These changes are characterized by a common increase in CD271 expression concomitantly with loss of differentiation markers such as melan-A and tyrosinase, enhanced aldehyde dehydrogenase (ALDH) activity and upregulation of histone demethylases. Accordingly, IDTCs show a loss of H3K4me3, H3K27me3 and gain of H3K9me3 suggesting activation and repression of differential genes. Drug holidays at the IDTC state allow for reversion into parental cells re-sensitizing them to the drug they were primarily exposed to. However, upon continuous drug exposure IDTCs eventually transform into permanent and irreversible drug-resistant cells. Knockdown of CD271 or KDM5B decreases transition into the IDTC state substantially but does not prevent it. Targeting IDTCs would be crucial for sustainable disease management and prevention of acquired drug resistance.


Journal of Neurotrauma | 2013

More than cell dust: microparticles isolated from cerebrospinal fluid of brain injured patients are messengers carrying mRNAs, miRNAs, and proteins.

Silke Patz; Christa Trattnig; Gerda Grünbacher; Birgit Ebner; Christian Gülly; Alexandra Novak; Beate Rinner; Gerd Leitinger; Markus Absenger; Oana A. Tomescu; Gerhard G. Thallinger; Ulrike Fasching; Sonja Wissa; Juan Archelos-Garcia; Ute Schäfer

Microparticles are cell-derived, membrane-sheathed structures that are believed to shuttle proteins, mRNA, and miRNA to specific local or remote target cells. To date best described in blood, we now show that cerebrospinal fluid (CSF) contains similar structures that can deliver RNAs and proteins to target cells. These are, in particular, molecules associated with neuronal RNA granules and miRNAs known to regulate neuronal processes. Small RNA molecules constituted 50% of the shuttled ribonucleic acid. Using microarray analysis, we identified 81 mature miRNA molecules in CSF microparticles. Microparticles from brain injured patients were more abundant than in non-injured subjects and contained distinct genetic information suggesting that they play a role in the adaptive response to injury. Notably, miR-9 and miR-451 were differentially packed into CSF microparticles derived from patients versus non-injured subjects. We confirmed the transfer of genetic material from CSF microparticles to adult neuronal stem cells in vitro and a subsequent microRNA-specific repression of distinct genes. This first indication of a regulated transport of functional genetic material in human CSF may facilitate the diagnosis and analysis of cerebral modulation in an otherwise inaccessible organ.


Nature Medicine | 2017

DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma

Nathan C. Sheffield; Gaëlle Pierron; Johanna Klughammer; Paul Datlinger; Andreas Schönegger; Michael Schuster; Johanna Hadler; Didier Surdez; Delphine Guillemot; Eve Lapouble; Paul Fréneaux; Jacqueline Champigneulle; Raymonde Bouvier; Diana Walder; Ingeborg M. Ambros; Caroline Hutter; Eva Sorz; Ana Teresa Amaral; Enrique de Alava; Katharina Schallmoser; Dirk Strunk; Beate Rinner; Bernadette Liegl-Atzwanger; Berthold Huppertz; Andreas Leithner; Gonzague de Pinieux; Philippe Terrier; Valérie Laurence; Jean Michon; Ruth Ladenstein

Developmental tumors in children and young adults carry few genetic alterations, yet they have diverse clinical presentation. Focusing on Ewing sarcoma, we sought to establish the prevalence and characteristics of epigenetic heterogeneity in genetically homogeneous cancers. We performed genome-scale DNA methylation sequencing for a large cohort of Ewing sarcoma tumors and analyzed epigenetic heterogeneity on three levels: between cancers, between tumors, and within tumors. We observed consistent DNA hypomethylation at enhancers regulated by the disease-defining EWS-FLI1 fusion protein, thus establishing epigenomic enhancer reprogramming as a ubiquitous and characteristic feature of Ewing sarcoma. DNA methylation differences between tumors identified a continuous disease spectrum underlying Ewing sarcoma, which reflected the strength of an EWS-FLI1 regulatory signature and a continuum between mesenchymal and stem cell signatures. There was substantial epigenetic heterogeneity within tumors, particularly in patients with metastatic disease. In summary, our study provides a comprehensive assessment of epigenetic heterogeneity in Ewing sarcoma and thereby highlights the importance of considering nongenetic aspects of tumor heterogeneity in the context of cancer biology and personalized medicine.


Journal of Natural Products | 2012

Naphthoquinones from Onosma paniculata Induce Cell-Cycle Arrest and Apoptosis in Melanoma Cells

Nadine Kretschmer; Beate Rinner; Alexander Deutsch; Birgit Lohberger; Heike Knausz; Olaf Kunert; Martina Blunder; Herbert Boechzelt; Helmut Schaider; Rudolf Bauer

Activity-guided fractionation of a petroleum ether-soluble extract of the roots of Onosma paniculata, which has been shown to affect the cell cycle and to induce apoptosis in melanoma cells, led to the isolation of several shikonin derivatives, namely, β-hydroxyisovalerylshikonin (1), acetylshikonin (2), dimethylacrylshikonin (3), and a mixture of α-methylbutyrylshikonin and isovalerylshikonin (4+5). All compounds exhibited strong cytotoxicity against eight cancer cell lines and MRC-5 lung fibroblasts, with 3 found to possess the most potent cytotoxicity toward four melanoma cell lines (SBcl2, WM35, WM9, and WM164). Furthermore, 3 and the mixture of 4+5 were found to interfere with cell-cycle progression in these cell lines and led to an increasing number of cells in the subG1 region as well as to caspase-3/7 activation, indicating apoptotic cell death.


Journal of Ethnopharmacology | 2010

A petrol ether extract of the roots of Onosma paniculatum induces cell death in a caspase dependent manner

Beate Rinner; Nadine Kretschmer; Heike Knausz; Andrea Mayer; Herbert Boechzelt; Xiao-Jiang Hao; Guenther Heubl; Thomas Efferth; Helmut Schaider; Rudolf Bauer

AIM OF THE STUDY Traditional Chinese medicine (TCM) has become very popular in Western countries during the last years. Zicao, a remedy of TCM, has been traditionally used to treat cancer, and, its main constituents, naphthoquinones, have been reported to possess antitumor activity (Chen et al., 2002; Papageorgiou et al., 1999). Here, we prepared extracts of different polarities of Onosma paniculatum Bur. & Franch., a plant which is amongst others used as Zicao, but, much less investigated. The extracts were analyzed concerning their growth inhibitory and apoptosis-inducing activity in various tumor cells. MATERIALS AND METHODS Cell viability was measured by XTT viability and a growth inhibition assay. Effects on the cell cycle and caspase-3 were determined by flow cytometry. RESULTS From three different extracts, a petrol ether extract showed significant growth inhibitory effect, cell cycle influence and caspase-3 dependent induction of apoptosis which was time and dose dependent. CONCLUSION To further determine the activity and mechanism of action of the petrol ether extract, we would like to isolate and identify the active principle and investigate the effects in more detail.


Brain Behavior and Immunity | 2015

Synergistic effects of NOD1 or NOD2 and TLR4 activation on mouse sickness behavior in relation to immune and brain activity markers

Aitak Farzi; Florian Reichmann; Andreas Meinitzer; Raphaela Mayerhofer; Piyush Jain; Am Hassan; Esther E. Fröhlich; Karin Wagner; Evelin Painsipp; Beate Rinner; Peter Holzer

Toll-like receptors (TLRs) and nuclear-binding domain (NOD)-like receptors (NLRs) are sensors of bacterial cell wall components to trigger an immune response. The TLR4 agonist lipopolysaccharide (LPS) is a strong immune activator leading to sickness and depressed mood. NOD agonists are less active but can prime immune cells to augment LPS-induced cytokine production. Since the impact of NOD and TLR co-activation in vivo has been little studied, the effects of the NOD1 agonist FK565 and the NOD2 agonist muramyl dipeptide (MDP), alone and in combination with LPS, on immune activation, brain function and sickness behavior were investigated in male C57BL/6N mice. Intraperitoneal injection of FK565 (0.001 or 0.003 mg/kg) or MDP (1 or 3 mg/kg) 4 h before LPS (0.1 or 0.83 mg/kg) significantly aggravated and prolonged the LPS-evoked sickness behavior as deduced from a decrease in locomotion, exploration, food intake and temperature. When given alone, FK565 and MDP had only minor effects. The exacerbation of sickness behavior induced by FK565 or MDP in combination with LPS was paralleled by enhanced plasma protein and cerebral mRNA levels of proinflammatory cytokines (IFN-γ, IL-1β, IL-6, TNF-α) as well as enhanced plasma levels of kynurenine. Immunohistochemical visualization of c-Fos in the brain revealed that NOD2 synergism with TLR4 resulted in increased activation of cerebral nuclei relevant to sickness. These data show that NOD1 or NOD2 synergizes with TLR4 in exacerbating the immune, sickness and brain responses to peripheral immune stimulation. Our findings demonstrate that the known interactions of NLRs and TLRs at the immune cell level extend to interactions affecting brain function and behavior.

Collaboration


Dive into the Beate Rinner's collaboration.

Top Co-Authors

Avatar

Andreas Leithner

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Birgit Lohberger

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Deutsch

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole Stuendl

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dagmar Zweytick

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge