Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beatrice Del Papa is active.

Publication


Featured researches published by Beatrice Del Papa.


Experimental Hematology | 2008

Mesenchymal cells recruit and regulate T regulatory cells

Mauro Di Ianni; Beatrice Del Papa; Maria De Ioanni; Lorenzo Moretti; Elisabetta Bonifacio; Debora Cecchini; Paolo Sportoletti; Franca Falzetti; Antonio Tabilio

OBJECTIVE Despite much investigation into T regulatory cells (Tregs), little is known about the mechanism controlling their recruitment and function. Because multipotent mesenchymal stromal cells (MSCs) exert an immune regulatory function and suppress T-cell proliferation, this in vitro study investigated their role in Treg recruitment and function. MATERIALS AND METHODS Human MSCs and different T cell populations (CD3(+), CD3(+)/CD45RA(+), CD3(+)/CD45RO(+), CD4(+)/CD25(+), CD4(+)/CD25(+)/CD45RO(+), CD4(+)/CD25(+)/CD45RA(+)) from healthy donors were cocultured for up to 15 days. Harvested lymphocytes were analyzed by flow cytometry and FoxP3 and CD127 expressions were measured by real-time polymerase chain reaction. Their regulatory activity was assessed. RESULTS We demonstrate MSC recruit Tregs from a fraction of CD3(+) and from immunoselected CD3(+)/CD45RA(+) and CD3(+)/CD45RO(+) fractions. After culture with MSCs both immunoselected fractions registered increases in the CD4(+)/CD25(bright)/FoxP3 subset and CD127 expression was downregulated. When purified Treg populations (CD4/CD25(+), CD4/CD25(+)/CD45RA(+), and CD4/CD25(+)/CD45RO(+)) are used in MSC cocultures, they maintain FoxP3 expression and CD127 expression is downregulated. Treg suppressive capacity was maintained in Treg populations that were layered on MSC for up to 15 days while control Tregs lost all suppressive activity after 5 days culture. CONCLUSIONS In conclusion, our study demonstrates that MSCs recruit, regulate, and maintain T-regulatory phenotype and function over time.


Blood | 2014

HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse

Massimo F. Martelli; Mauro Di Ianni; Loredana Ruggeri; Franca Falzetti; Alessandra Carotti; Adelmo Terenzi; Antonio Pierini; Maria Speranza Massei; Lucia Amico; Elena Urbani; Beatrice Del Papa; Tiziana Zei; Roberta Iacucci Ostini; Debora Cecchini; Rita Tognellini; Yair Reisner; Franco Aversa; Brunangelo Falini; Andrea Velardi

Posttransplant relapse is still the major cause of treatment failure in high-risk acute leukemia. Attempts to manipulate alloreactive T cells to spare normal cells while killing leukemic cells have been unsuccessful. In HLA-haploidentical transplantation, we reported that donor-derived T regulatory cells (Tregs), coinfused with conventional T cells (Tcons), protected recipients against graft-versus-host disease (GVHD). The present phase 2 study investigated whether Treg-Tcon adoptive immunotherapy prevents posttransplant leukemia relapse. Forty-three adults with high-risk acute leukemia (acute myeloid leukemia 33; acute lymphoblastic leukemia 10) were conditioned with a total body irradiation-based regimen. Grafts included CD34(+) cells (mean 9.7 × 10(6)/kg), Tregs (mean 2.5 × 10(6)/kg), and Tcons (mean 1.1 × 10(6)/kg). No posttransplant immunosuppression was given. Ninety-five percent of patients achieved full-donor type engraftment and 15% developed ≥grade 2 acute GVHD. The probability of disease-free survival was 0.56 at a median follow-up of 46 months. The very low cumulative incidence of relapse (0.05) was significantly better than in historical controls. These results demonstrate the immunosuppressive potential of Tregs can be used to suppress GVHD without loss of the benefits of graft-versus-leukemia (GVL) activity. Humanized murine models provided insights into the mechanisms underlying separation of GVL from GVHD, suggesting the GVL effect is due to largely unopposed Tcon alloantigen recognition in bone marrow.


British Journal of Haematology | 2010

NOTCH1 PEST domain mutation is an adverse prognostic factor in B‐CLL

Paolo Sportoletti; Stefano Baldoni; Laura Cavalli; Beatrice Del Papa; Elisabetta Bonifacio; Raffaella Ciurnelli; Alain Sylvin Bell; Ambra Di Tommaso; Emanuela Rosati; Barbara Crescenzi; Cristina Mecucci; Isabella Screpanti; Pierfrancesco Marconi; Massimo F. Martelli; Mauro Di Ianni; Franca Falzetti

Prosper, J.Y., Campbell, K., Sutherland, D.R., Metcalfe, P., Horsfall, W. & Ouwehand, W.H. (2002) A tyrosine703serine polymorphism of CD109 defines the Gov platelet alloantigens. Blood, 99, 1692– 1698. Smith, J.W., Hayward, C.P., Horsewood, P., Warkentin, T.E., Denomme, G.A. & Kelton, J.G. (1995) Characterization and localization of the Gova/b alloantigens to the glycosylphosphatidylinositol-anchored protein CDw109 on human platelets. Blood, 86, 2807–2814.


European Journal of Immunology | 2013

Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction.

Beatrice Del Papa; Paolo Sportoletti; Debora Cecchini; Emanuela Rosati; Chiara Balucani; Stefano Baldoni; Katia Fettucciari; Pierfrancesco Marconi; Massimo F. Martelli; Franca Falzetti; Mauro Di Ianni

Notch1 signaling is involved in regulatory T (Treg)‐cell differentiation. We previously demonstrated that, when cocultured with CD3+ cells, mesenchymal stem cells (MSCs) induced a T‐cell population with a regulatory phenotype. Here, we investigated the molecular mechanism underlying MSC induction of human Treg cells. We show that the Notch1 pathway is activated in CD4+ T cells cocultured with MSCs. Inhibition of Notch1 signaling through GSI‐I or the Notch1 neutralizing antibody reduced expression of HES1 (the Notch1 downstream target) and the percentage of MSC‐induced CD4+CD25highFOXP3+ cells in vitro. Moreover, we demonstrate that FOXP3 is a downstream target of Notch signaling in human cells. No crosstalk between Notch1 and TGF‐β signaling pathways was observed in our experimental system. Together, these findings indicate that activation of the Notch1 pathway is a novel mechanism in the human Treg‐cell induction mediated by MSCs.


International Journal of Cancer | 2013

γ-Secretase inhibitor I induces apoptosis in chronic lymphocytic leukemia cells by proteasome inhibition, endoplasmic reticulum stress increase and Notch down-regulation.

Emanuela Rosati; Rita Sabatini; Filomena De Falco; Beatrice Del Papa; Franca Falzetti; Mauro Di Ianni; Laura Cavalli; Katia Fettucciari; Andrea Bartoli; Isabella Screpanti; Pierfrancesco Marconi

γ‐Secretase inhibitors (GSIs) have been proposed for combined therapies of malignancies with a dysregulated Notch signaling. GSI I (Z‐Leu‐Leu‐Nle‐CHO) induces apoptosis of some tumor cells by inhibiting proteasome and Notch activity. Alterations in these two cell survival regulators contribute to apoptosis resistance of chronic lymphocytic leukemia (CLL) cells. Here, we investigated the mechanisms whereby GSI I increases apoptosis of primary CLL cells. Time‐course studies indicate that initial apoptotic events are inhibition of proteasome activity, concomitant with an increased endoplasmic reticulum (ER) stress apoptotic signaling, and a consistent Noxa protein up‐regulation. These events precede, and some of them contribute to, mitochondrial alterations, which occur notwithstanding Mcl‐1 accumulation induced by GSI I. In CLL cells, GSI I inhibits Notch1 and Notch2 activation only in the late apoptotic phases, suggesting that this event does not initiate CLL cell apoptosis. However, Notch inhibition may contribute to amplify GSI I‐induced CLL cell apoptosis, given that Notch activation sustains the survival of these cells, as demonstrated by the evidence that both Notch1 and Notch2 down‐regulation by small‐interfering RNA accelerates spontaneous CLL cell apoptosis. Overall, our results show that GSI I triggers CLL cell apoptosis by inhibiting proteasome activity and enhancing ER stress, and amplifies it by blocking Notch activation. These findings suggest the potential relevance of simultaneously targeting these three important apoptosis regulators as a novel therapeutic strategy for CLL.


Transfusion and Apheresis Science | 2012

T regulatory cell separation for clinical application

Mauro Di Ianni; Beatrice Del Papa; Tiziana Zei; Roberta Iacucci Ostini; Debora Cecchini; Maria Grazia Cantelmi; Stefano Baldoni; Paolo Sportoletti; Laura Cavalli; Alessandra Carotti; Antonio Pierini; Brunangelo Falini; Massimo F. Martelli; Franca Falzetti

We selected T regulatory cells (Tregs) from standard leukapheresis using double-negative selection (anti-CD8 and anti-CD19) followed by positive selection (anti-CD25) and 72 procedures were performed. A median of 263×10(6)cells (range 143-470×10(6)) were recovered with a mean of CD4(+)/CD25(+) cells of 94.5±2.4% (36.5±18.6% CD4(+)/CD25(+hi)). FoxP3(+) cells were equal to 79.8%±22.2. CD127(+) cells were 12.5%±8.2. The inhibition assay showed an inhibition rate of 67±22. Cells isolated by means of this approach can be used in allogeneic hematopoietic stem cell transplantation to reduce the incidence and severity of GvHD without bystander inhibition of general immunity.


International Journal of Hematology | 2013

NOTCH and NF-κB interplay in chronic lymphocytic leukemia is independent of genetic lesion

Stefano Baldoni; Paolo Sportoletti; Beatrice Del Papa; Patrizia Aureli; Erica Dorillo; Emanuela Rosati; Raffaella Ciurnelli; Pierfrancesco Marconi; Franca Falzetti; Mauro Di Ianni

The NOTCH and nuclear factor kappa B (NF-κB) pathways are both constitutively activated in Chronic Lymphocytic Leukemia (CLL). We first described the NOTCH1 PEST domain mutation in a CLL subgroup, but the activation of the NOTCH pathway in NOTCH1-unmutated cases remains unexplained. Here, we investigated whether genetic lesions in the NF-κB/NOTCH loop might support the NOTCH activation status by sequencing negative (TNFAIP3/A20) and positive (TRAF2, TRAF5, TNFRSF11A/RANK, MAP3K7/TAK1, and CARD11) regulators of NF-κB together with NF-κB targets on the NOTCH pathway, the NOTCH ligands Jagged1 and Jagged2, in CLL patients. The sequence analysis revealed four missense mutations for A20, TRAF2, TRAF5 and RANK1 genes, all causing a change in amino acid group from polar to non-polar, but functional domains were not involved. Specific predictive software analyses confirmed that the amino acid changes have a low-functional impact on the protein. Our results show that in CLL, NF-κB regulators and Jagged are both unmutated, suggesting that the Jagged-mediated interplay between NF-κB and NOTCH is independent of genetic lesions.


International Journal of Cancer | 2018

Bepridil exhibits anti-leukemic activity associated with NOTCH1 pathway inhibition in chronic lymphocytic leukemia: Activity of bepridil against CLL

Stefano Baldoni; Beatrice Del Papa; Erica Dorillo; Patrizia Aureli; Filomena De Falco; Chiara Rompietti; Daniele Sorcini; Emanuela Varasano; Debora Cecchini; Tiziana Zei; Ambra Di Tommaso; Emanuela Rosati; Gabriela Alexe; Giovanni Roti; Kimberly Stegmaier; Mauro Di Ianni; Franca Falzetti; Paolo Sportoletti

Dysregulated NOTCH1 signaling, by either gene mutations or microenvironment interactions, has been increasingly linked to chronic lymphocytic leukemia (CLL). Thus, inhibiting NOTCH1 activity represents a potential therapeutic opportunity for this disease. Using gene expression‐based screening, we identified the calcium channel modulator bepridil as a new NOTCH1 pathway inhibitor. In primary CLL cells, bepridil induced selective apoptosis even in the presence of the protective stroma. Cytotoxic effects of bepridil were independent of NOTCH1 mutation and other prognostic markers. The antitumor efficacy of bepridil was associated with inhibition of NOTCH1 activity through a decrement in trans‐membrane and activated NOTCH1 protein levels with unchanged NOTCH2 protein levels. In a CLL xenotransplant model, bepridil significantly reduced the percentage of leukemic cells infiltrating the spleen via enhanced apoptosis and decreased NOTCH1 activation. In conclusion, we report in vitro and in vivo anti‐leukemic activity of bepridil associated with inhibition of the NOTCH1 pathway in CLL. These data provide a rationale for the clinical development of bepridil as anti‐NOTCH1 targeted therapy for CLL patients.


Biology of Blood and Marrow Transplantation | 2017

Clinical-Grade–Expanded Regulatory T Cells Prevent Graft-versus-Host Disease While Allowing a Powerful T Cell–Dependent Graft-versus-Leukemia Effect in Murine Models

Beatrice Del Papa; Loredana Ruggeri; Elena Urbani; Stefano Baldoni; Debora Cecchini; Tiziana Zei; Roberta Iacucci Ostini; Barbara Crescenzi; Alessandra Carotti; Antonio Pierini; Paolo Sportoletti; Paolo Di Bartolomeo; Franca Falzetti; Cristina Mecucci; Andrea Velardi; Massimo F. Martelli; Mauro Di Ianni

We developed a good manufacturing practices-compatible expansion protocol to improve number and purity of regulatory T cells (Tregs) available for clinical trials. Six clinical-grade separation procedures were performed, followed by expansion with high-dose interleukin (IL)-2, anti-CD3/anti-CD28 TCR stimulation, and rapamycin for 19 days achieving a median of 8.5-fold (range, 6.25 to 13.7) expansion. FOXP3 expression was stably maintained over the culture period, while the percentage of CD127 was significantly reduced. The in vitro suppression assay showed a strong Mixed Lymphocytes Reaction inhibition. In vitro amplification did not induce any karyotypic modification. To evaluate the graft-versus-host disease (GVHD)/graft-versus-leukemia (GVL) bifunctional axis, expanded Tregs and conventional T cells (Tcons) were tested in NOD/SCID/IL2Rgnull mice injected with primary acute myeloid leukemia (AML) cells, AML cell line, acute lymphoid leukemia Philadelphia cell line, or Burkitt-like lymphoma cell line. All mice that received leukemia cells together with expanded Tregs and Tcons were rescued from leukemia and survived without GVHD, showing that Treg expansion procedure did not compromise GVHD control and the strong Tcon-mediated GVL activity. This report might represent the basis for treating high-risk leukemia and/or relapsed/refractory leukemia patients with high-dose Treg/Tcons.


Cytotherapy | 2009

Activated autologous T cells exert an anti-B-cell chronic lymphatic leukemia effect in vitro and in vivo

Mauro Di Ianni; Lorenzo Moretti; Adelmo Terenzi; Federico Bazzucchi; Beatrice Del Papa; Moira Bazzucchi; Raffaella Ciurnelli; Alessandro Lucchesi; Paolo Sportoletti; Emanuela Rosati; Pier Francesco Marconi; Franca Falzetti; Antonio Tabilio

BACKGROUND AIMS The impact of chronic lymphatic leukemia (CLL) tumor burden on the autologous immune system has already been demonstrated. This study attempted to elucidate the molecular mechanisms underlying T-cell immunologic deficiencies in CLL. METHODS Freshly isolated CD3(+) T cells from patients with a diagnosis of CLL and healthy donors were analyzed by gene expression profiling. Activated T cells from 20 patients with CLL were tested in vitro for cytotoxicity against mutated and unmutated autologous B cells and DAUDI, K562 and P815 cell lines. To investigate T-cell mediated cytotoxicity in vivo, we co-transplanted OKT3-activated T lymphocytes and autologous B-cell CLL (B-CLL) cells into NOD/SCID mice. RESULTS Gene expression profiles of peripheral blood T cells from B-CLL patients showed 25 down-regulated, and 31 up-regulated, genes that were mainly involved in cell differentiation, proliferation, survival, apoptosis, cytoskeleton formation, vesicle trafficking and T-cell activation. After culture, the T-cell count remained unchanged, CD8 cells expanded more than CD4 and a cytotoxicity index >30% was present in 5/20 patients. Cytotoxicity against B autologous leukemic cells did not correlate with B-cell mutational status. Only activated T cells exerting cytotoxicity against autologous leukemic B cells prevented CLL in a human-mouse chimera. CONCLUSIONS This study indicates that patients with CLL are affected by a partial immunologic defect that might be somewhat susceptible to repair. This study identifies the molecular pathways underlying T-cell deficiencies in CLL and shows that cytotoxic T-cell functions against autologous B-CLL can be rebuilt at least in part in vitro and in vivo.

Collaboration


Dive into the Beatrice Del Papa's collaboration.

Top Co-Authors

Avatar

Mauro Di Ianni

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge