Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beatrice Demarchi is active.

Publication


Featured researches published by Beatrice Demarchi.


Nature Materials | 2016

Tuning hardness in calcite by incorporation of amino acids

Yi-Yeoun Kim; Joseph D. Carloni; Beatrice Demarchi; David Sparks; David G. Reid; Miki E. Kunitake; Chiu C. Tang; Melinda J. Duer; Colin L. Freeman; Boaz Pokroy; Kirsty Penkman; John H. Harding; Lara A. Estroff; Shefford P. Baker; Fiona C. Meldrum

Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit-mineral single crystals containing embedded macromolecules-remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.


eLife | 2016

Protein sequences bound to mineral surfaces persist into deep time

Beatrice Demarchi; Shaun Hall; Teresa Roncal-Herrero; Colin L. Freeman; Jos Woolley; Molly Crisp; Julie Wilson; Anna K. Fotakis; R. Fischer; Benedikt M. Kessler; Rosa Rakownikow Jersie-Christensen; J. Olsen; James Haile; Jessica Thomas; Curtis W. Marean; John Parkington; Samantha Presslee; Julia A. Lee-Thorp; Peter Ditchfield; Jacqueline F. Hamilton; Martyn W. Ward; C. Wang; Marvin D. Shaw; Terry Harrison; Manuel Domínguez-Rodrigo; Ross D. E. MacPhee; Amandus Kwekason; Michaela Ecker; Liora Kolska Horwitz; Michael Chazan

Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C). DOI: http://dx.doi.org/10.7554/eLife.17092.001


Proceedings of the National Academy of Sciences of the United States of America | 2015

New chronology for Ksâr ‘Akil (Lebanon) supports Levantine route of modern human dispersal into Europe

Marjolein Bosch; Marcello A. Mannino; Amy L. Prendergast; Tamsin C. O’Connell; Beatrice Demarchi; Sheila Taylor; Laura Niven; Johannes van der Plicht; Jean-Jacques Hublin

Significance Bayesian modeling of AMS radiocarbon dates on the marine mollusk Phorcus turbinatus from Ksâr ‘Akil (Lebanon) indicates that the earliest presence of Upper Paleolithic (UP) modern humans in the Levant predates 45,900 cal B.P. Similarities in early UP lithic technology and material culture suggest population dispersals between the Levant and Europe around 50,000–40,000 cal B.P. Our data confirm the presence of modern humans carrying a UP toolkit in the Levant prior to any known European modern human fossils and allow rejection of recent claims that European UP modern humans predate those in the Levant. This result, in turn, suggests the Levant served as a corridor for the dispersal of modern humans out of Africa and into Eurasia. Modern human dispersal into Europe is thought to have occurred with the start of the Upper Paleolithic around 50,000–40,000 y ago. The Levantine corridor hypothesis suggests that modern humans from Africa spread into Europe via the Levant. Ksâr ‘Akil (Lebanon), with its deeply stratified Initial (IUP) and Early (EUP) Upper Paleolithic sequence containing modern human remains, has played an important part in the debate. The latest chronology for the site, based on AMS radiocarbon dates of shell ornaments, suggests that the appearance of the Levantine IUP is later than the start of the first Upper Paleolithic in Europe, thus questioning the Levantine corridor hypothesis. Here we report a series of AMS radiocarbon dates on the marine gastropod Phorcus turbinatus associated with modern human remains and IUP and EUP stone tools from Ksâr ‘Akil. Our results, supported by an evaluation of individual sample integrity, place the EUP layer containing the skeleton known as “Egbert” between 43,200 and 42,900 cal B.P. and the IUP-associated modern human maxilla known as “Ethelruda” before ∼45,900 cal B.P. This chronology is in line with those of other Levantine IUP and EUP sites and demonstrates that the presence of modern humans associated with Upper Paleolithic toolkits in the Levant predates all modern human fossils from Europe. The age of the IUP-associated Ethelruda fossil is significant for the spread of modern humans carrying the IUP into Europe and suggests a rapid initial colonization of Europe by our species.


Quaternary Geochronology | 2013

Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part I: Isolation and testing of the closed system

Beatrice Demarchi; Keith Rogers; D.A. Fa; C.J. Finlayson; Nicky Milner; Kirsty Penkman

This study successfully isolates a fraction of intra-crystalline proteins from shells of the marine gastropod Patella vulgata and assesses the suitability of these proteins for IcPD (Intra-crystalline Protein Diagenesis) geochronology. We discuss the mineralogical composition of this gastropod, investigated for the first time by X-ray diffraction mapping, and use the results to inform our sampling strategy. The potential of the calcitic rim and of a bulk sample (containing both apex and rim) of the shell to act as stable repositories for the intra-crystalline proteins during diagenesis is examined. The composition and the diagenetic behaviour of the intra-crystalline proteins isolated from different locations within the shell are compared, highlighting the necessity of targeting consistent sampling positions. We induced artificial diagenesis of both intra-crystalline and whole-shell proteins by conducting high-temperature experiments in hydrous environment; this allowed us to quantify the loss of amino acids by leaching and therefore evaluate the open- or closed-system behaviour of the different fractions of proteins. The results obtained provide further confirmation that patterns of diagenesis vary according to the protein sequence, structure, and location within or outside the intra-crystalline fraction. As Patella is frequently found in the fossil record, both in archaeological and geological contexts, the application of IcPD geochronology to this biomineral opens up the possibility to obtain reliable age information from a range of sites in different areas of the world.


Quaternary Geochronology | 2013

Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part II: Breakdown and temperature sensitivity

Beatrice Demarchi; Matthew J. Collins; P. J. Tomiak; Bethan J. Davies; Kirsty Penkman

Artificial diagenesis of the intra-crystalline proteins isolated from Patella vulgata was induced by isothermal heating at 140 °C, 110 °C and 80 °C. Protein breakdown was quantified for multiple amino acids, measuring the extent of peptide bond hydrolysis, amino acid racemisation and decomposition. The patterns of diagenesis are complex; therefore the kinetic parameters of the main reactions were estimated by two different methods: 1) a well-established approach based on fitting mathematical expressions to the experimental data, e.g. first-order rate equations for hydrolysis and power-transformed first-order rate equations for racemisation; and 2) an alternative model-free approach, which was developed by estimating a “scaling” factor for the independent variable (time) which produces the best alignment of the experimental data. This method allows the calculation of the relative reaction rates for the different temperatures of isothermal heating. High-temperature data were compared with the extent of degradation detected in sub-fossil Patella specimens of known age, and we evaluated the ability of kinetic experiments to mimic diagenesis at burial temperature. The results highlighted a difference between patterns of degradation at low and high temperature and therefore we recommend caution for the extrapolation of protein breakdown rates to low burial temperatures for geochronological purposes when relying solely on kinetic data.


Geochemical Transactions | 2015

Biomineralisation by earthworms - An investigation into the stability and distribution of amorphous calcium carbonate

Mark E. Hodson; Liane G. Benning; Beatrice Demarchi; Kirsty Penkman; Juan Diego Rodriguez-Blanco; P. F. Schofield; Emma A. A. Versteegh

AbstractBackgroundMany biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC. We analysed the milky fluid from which granules form and solid granules for amino acid (by liquid chromatography) and functional group (by Fourier transform infrared (FTIR) spectroscopy) compositions. Granule elemental composition was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and electron microprobe analysis (EMPA). Mass of ACC present in solid granules was quantified using FTIR and compared to granule elemental and amino acid compositions. Bulk analysis of granules was of powdered bulk material. Spatially resolved analysis was of thin sections of granules using synchrotron-based μ-FTIR and EMPA electron microprobe analysis.ResultsThe milky fluid from which granules form is amino acid-rich (≤ 136 ± 3 nmol mg−1 (n = 3; ± std dev) per individual amino acid); the CaCO3 phase present is ACC. Even four years after production, granules contain ACC. No correlation exists between mass of ACC present and granule elemental composition. Granule amino acid concentrations correlate well with ACC content (r ≥ 0.7, p ≤ 0.05) consistent with a role for amino acids (or the proteins they make up) in ACC stabilisation. Intra-granule variation in ACC (RSD = 16%) and amino acid concentration (RSD = 22–35%) was high for granules produced by the same earthworm. Maps of ACC distribution produced using synchrotron-based μ-FTIR mapping of granule thin sections and the relative intensity of the ν2: ν4 peak ratio, cluster analysis and component regression using ACC and calcite standards showed similar spatial distributions of likely ACC-rich and calcite-rich areas. We could not identify organic peaks in the μ-FTIR spectra and thus could not determine whether ACC-rich domains also had relatively high amino acid concentrations. No correlation exists between ACC distribution and elemental concentrations determined by EMPA.ConclusionsACC present in earthworm CaCO3 granules is highly stable. Our results suggest a role for amino acids (or proteins) in this stability. We see no evidence for stabilisation of ACC by incorporation of inorganic components. Graphical abstractSynchrotron-based μ-FTIR mapping was used to determine the spatial distribution of amorphous calcium carbonate in earthworm-produced CaCO3 granules.


Analytical Chemistry | 2013

New experimental evidence for in-chain amino acid racemization of serine in a model peptide.

Beatrice Demarchi; Matthew J. Collins; Ed Bergström; Adam A. Dowle; Kirsty Penkman; Jane Thomas-Oates; Julie Wilson

The facile racemization of protein-bound amino acids plays an important role in the aging and pathologies of living tissues, and it can be exploited for protein geochronological studies in subfossil biominerals. However, the in-chain degradation pathways of amino acids are complex and difficult to elucidate. Serine has proven to be particularly elusive, and its ability to racemize as a peptide-bound residue (like asparagine and aspartic acid) has not been demonstrated. This study investigates the patterns of degradation of a model peptide (WNSVWAW) at elevated temperatures, quantifying the extent of racemization and peptide bond hydrolysis using reverse-phase high-performance liquid chromatography (RP-HPLC) and tracking the presence of degradation products by MALDI-MS. We provide direct evidence that, under these experimental conditions, both serine and asparagine are able to undergo racemization as internally bound residues, which shows their potential for initiating protein breakdown and provides an explanation for the presence of d-enantiomers in living mammalian tissues.


Scientific Reports | 2016

Identification of the earliest collagen- and plant-based coatings from Neolithic artefacts (Nahal Hemar cave, Israel)

Caroline Solazzo; Blandine Courel; Jacques Connan; Bart E. van Dongen; Holly E. Barden; Kirsty Penkman; Sheila Taylor; Beatrice Demarchi; Pierre Adam; Philippe Schaeffer; Arie Nissenbaum; Ofer Bar-Yosef; Michael Buckley

Mortuary practices in human evolution record cognitive, social changes and technological innovations. The Neolithic Revolution in the Levant was a watershed in this domain that has long fascinated the archaeological community. Plaster modelled skulls are well known at Jericho and several other Neolithic sites, and in Nahal Hemar cave (Israel, ca. 8200 −7300 cal. BC) excavations yielded six unique human skulls covered with a black organic coating applied in a net pattern evoking a headdress. This small cave was used as storage for paraphernalia in the semi-arid area of the Judean desert and the dry conditions preserved other artefacts such as baskets coated with a similar dark substance. While previous analysis had revealed the presence of amino acids consistent with a collagen signature, in the present report, specific biomarkers were characterised using combined proteomic and lipid approaches. Basket samples yielded collagen and blood proteins of bovine origin (Bos genus) and a large sequence coverage of a plant protein charybdin (Charybdis genus). The skull residue samples were dominated by benzoate and cinnamate derivatives and triterpenes consistent with a styrax-type resin (Styrax officinalis), thus providing the earliest known evidence of an odoriferous plant resin used in combination with an animal product.


PLOS ONE | 2014

An Integrated Approach to the Taxonomic Identification of Prehistoric Shell Ornaments

Beatrice Demarchi; Sonia O'Connor; Andre De Lima Ponzoni; Raquel de Almeida Rocha Ponzoni; Alison Sheridan; Kirsty Penkman; Y. Hancock; Julie Wilson

Shell beads appear to have been one of the earliest examples of personal adornments. Marine shells identified far from the shore evidence long-distance transport and imply networks of exchange and negotiation. However, worked beads lose taxonomic clues to identification, and this may be compounded by taphonomic alteration. Consequently, the significance of this key early artefact may be underestimated. We report the use of bulk amino acid composition of the stable intra-crystalline proteins preserved in shell biominerals and the application of pattern recognition methods to a large dataset (777 samples) to demonstrate that taxonomic identification can be achieved at genus level. Amino acid analyses are fast (<2 hours per sample) and micro-destructive (sample size <2 mg). Their integration with non-destructive techniques provides a valuable and affordable tool, which can be used by archaeologists and museum curators to gain insight into early exploitation of natural resources by humans. Here we combine amino acid analyses, macro- and microstructural observations (by light microscopy and scanning electron microscopy) and Raman spectroscopy to try to identify the raw material used for beads discovered at the Early Bronze Age site of Great Cornard (UK). Our results show that at least two shell taxa were used and we hypothesise that these were sourced locally.


STAR: Science & Technology of Archaeological Research | 2018

The identification of archaeological eggshell using peptide markers

Samantha Presslee; Julie Wilson; Jos Woolley; Julia Best; Douglas Russell; Anita Radini; R. Fischer; Benedikt M. Kessler; Rosa Boano; Matthew J. Collins; Beatrice Demarchi

ABSTRACT Avian eggshell survives well in alkaline and neutral soils, but its potential as an archaeological resource remains largely unexplored, mainly due to difficulties in its identification. Here we exploit the release of novel bird genomes and, for the first time on eggshell, use MALDI-ToF (matrix-assisted laser desorption ionisation-time of flight) mass spectrometry in combination with peptide sequencing by LC-MS/MS. The eggshell proteome is revealed as unexpectedly complex, with 5755 proteins identified for a reference collection comprising 23 bird species. We determined 782 m/z markers useful for eggshell identification, 583 of which could be assigned to known eggshell peptide sequences. These were used to identify eggshell fragments recovered from a medieval site at Freeschool Lane, Leicester. We discuss the specificity of the peptide markers and highlight the importance of assessing the level of taxonomic identification achievable for archaeological interpretation.

Collaboration


Dive into the Beatrice Demarchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge