Béatrice Georges
University of Burgundy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Béatrice Georges.
Biochemical Pharmacology | 2000
Béatrice Georges; Françoise Le Borgne; Stéphane Galland; Muriel Isoir; David Ecosse; Florence Grand-Jean; Jean Demarquoy
Carnitine is involved in the transfer of fatty acids across mitochondrial membranes. Carnitine is found in dairy and meat products, but is also biosynthesized from lysine and methionine via a process that, in rat, takes place essentially in the liver. After intestinal absorption or hepatic biosynthesis, carnitine is transferred to organs whose metabolism is dependent on fatty acid oxidation, such as heart and skeletal muscle. In skeletal muscle, carnitine concentration was found to be 50 times higher than in the plasma, implicating an active transport system for carnitine. In this study, we characterized this transport in isolated rat myotubes, established mouse C2C12 myoblastic cells, and rat myotube plasma membranes and found that it was Na(+)-dependent and partly inhibited by a Na(+)/K(+) ATPase inhibitor. L-carnitine analogues such as D-carnitine and gamma-butyrobetaine interfere with this system as does acyl carnitine. Among these inhibitors, the most potent was mildronate (3-(2,2,2-trimethylhydrazinium)propionate), known as a gamma-butyrobetaine hydroxylase inhibitor. It also induced a marked decrease in carnitine transport into muscle cells. Removal of carnitine or treatment with mildronate induced growth inhibition of cultured C2C12 myoblastic cells. These data suggest that myoblast growth and/or differentiation is dependent upon the presence of carnitine.
Cellular and Molecular Life Sciences | 2002
Stéphane Galland; Béatrice Georges; F. Le Borgne; G. Conductier; J. Viana Dias; Jean Demarquoy
Abstract. The carnitine system plays a key role in β-oxidation of long-chain fatty acids by permitting their transport into the mitochondrial matrix. The effects of hypothyroidism and hyperthyroidism were studied on γ-butyrobetaine hydroxylase (BBH), the enzyme responsible for carnitine biosynthesis in the rat. In rat liver, BBH activity was decreased in the hypothyroid state and increased in hyperthyroid animals. The modifications in BBH activity correlated with changes in the enzyme Vmax values. These changes were shown to be related to hepatic BBH mRNA abundance. Thyroid hormones are known to interact with lipid metabolism, in particular by increasing long-chain fatty acid oxidation through activation of carnitine-dependent fatty acid import into mitochondria. Our study showed that thyroid hormones also increased carnitine bioavailability.
Biochemical Pharmacology | 2003
Béatrice Georges; Stéphane Galland; Caroline Rigault; Françoise Le Borgne; Jean Demarquoy
L-Carnitine is a key molecule in the transfer of fatty acid across mitochondrial membranes. Bioavailable L-carnitine is either provided by an endogeneous biosynthesis or after intestinal absorption of dietary items containing L-carnitine. After intestinal absorption or hepatic biosynthesis, L-carnitine is transferred to organs whose metabolism is dependent upon fatty acid oxidation, such as skeletal muscle. To cross the muscle plasma membrane, there are several transporters involved. Among those transporters, OCTN2 is actually the only one to have been clearly characterized. Zidovudine is a commonly used inhibitor of human immunodeficiency virus (HIV) replication. Zidovudine has many side effects, including induction of myopathy characterized by a metabolic mitochondria dysfunction and a diminution of the muscle L-carnitine content. In this study, we described the characteristics of L-carnitine transport in C2C12 cells. We also demonstrated that zidovudine inhibited the L-carnitine transporter. This inhibition led to a significant reduction of the muscle cell growth. In C2C12 cells, the supplementation of L-carnitine prevented the effects of zidovudine and restored the normal cell growth.
Biochimica et Biophysica Acta | 1999
Stéphane Galland; Françoise Le Borgne; Frédérique Bouchard; Béatrice Georges; Pierre Clouet; Florence Grand-Jean; Jean Demarquoy
Carnitine biosynthesis from lysine and methionine involves five enzymatic reactions. gamma-butyrobetaine hydroxylase (BBH; EC 1.14. 11.1) is the last enzyme of this pathway. It catalyzes the reaction of hydroxylation of gamma-butyrobetaine to carnitine. The cDNA encoding this enzyme has been isolated and characterized. The cDNA contained an open reading frame of 1161 bp encoding a protein of 387 amino acids with a deduced molecular weight of 44.5 kDa. The sequence of the cDNA showed an important homology with the human cDNA recently isolated. Northern analysis showed gamma-butyrobetaine hydroxylase expression in the liver and in some extend in the testis and the epididymis. During this study, it also appeared that BBH mRNA expression was undetectable by Northern analysis during the perinatal period. During the development of the rat, the amount of BBH mRNA appeared after the weaning of the young rat and reached a maximal expression at the adult stage.
Journal of Endocrinological Investigation | 2007
Caroline Rigault; F. Le Borgne; Béatrice Georges; Jean Demarquoy
Ghrelin is a 28-amino-acid peptide secreted during starvation by gastric cells. Ghrelin physiologically induces food intake and seems to alter lipid and glucid metabolism in several tissues such as adipose tissue and liver. Liver has a key position in lipid metabolism as it allows the metabolic orientation of fatty acids between oxidation and esterification. We investigated the effects of peripheral ghrelin administration on 2 crucial parameters of fatty acid oxidation: the levocarnitine (L-carnitine)-dependent entry of the fatty acids in the mitochondria and the mitochondrial fatty acid oxidation. Ghrelin was either given to rats prior to the hepatocyte preparation and culture or used to treat hepatocytes prepared from control animals. Direct incubation of ghrelin to raw hepatocytes did not induce any change in the studied parameters. In hepatocytes prepared from 3 nmol ghrelin-treated rats, a 44% reduction of the mitochondrial fatty acid oxidation while no alteration of the L-carnitine-related parameters were observed. These results suggested (a) that ghrelin has no direct effect on liver, and (b) that when administrated to a whole organism, ghrelin may alter the lipid metabolism and the energy balance through a marked decrease in liver fatty acid oxidation.
Pharmacology | 2008
Caroline Rigault; Arnaud Bernard; Béatrice Georges; Adeline Kandel; Elisabeth Pfützner; Françoise Le Borgne; Jean Demarquoy
Extracellular ATP regulates cell proliferation, muscle contraction and myoblast differentiation. ATP present in the muscle interstitium can be released from contracting skeletal muscle cells. L-Carnitine is a key element in muscle cell metabolism, as it serves as a carrier for fatty acid through mitochondrial membranes, controlling oxidation and energy production. Treatment of C2C12 cells with 1 mmol/l of ATP induced a marked increase in L-carnitine uptake that was associated with an increase in L-carnitine content in these cells. These effects were found to be dependent on the density of the cultured cells and on the dose of ATP. The use of specific inhibitors of P2X and P2Y receptors abolished the effect of ATP on L-carnitine metabolism. As ATP can be released from stressed or exercising cells, it can be hypothesized that ATP acts as a messenger in the muscle. ATP will be released to recruit the next cells and increase their metabolism.
Muscle & Nerve | 2008
Françoise Le Borgne; Caroline Rigault; Béatrice Georges; Jean Demarquoy
L‐Carnitine plays an important role in skeletal muscle bioenergetics, and its bioavailability and thus its import may be crucial for muscle function. We studied the effect of thyroid hormone, insulin, and iron overload, hormones and nutrients known to alter muscle metabolism, on L‐carnitine import into C2C12 cells. We report here L‐carnitine uptake is increased by thyroid hormones and decreased by iron. Insulin was found to be ineffective in altering the L‐carnitine uptake. Muscle Nerve, 2008
Food Chemistry | 2004
Jean Demarquoy; Béatrice Georges; Caroline Rigault; Marie-Charlotte Royer; Amélie Clairet; Maud Soty; Serge Lekounoungou; Françoise Le Borgne
Biochemical Pharmacology | 2003
Béatrice Georges; Stéphane Galland; Caroline Rigault; Françoise Le Borgne; Jean Demarquoy
Nutrition Clinique Et Metabolisme | 2004
Caroline Rigault; F. Le Borgne; Béatrice Georges; Jean Demarquoy