Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beatrice Mihaela Radu is active.

Publication


Featured researches published by Beatrice Mihaela Radu.


Histochemistry and Cell Biology | 2015

Isolated human uterine telocytes: immunocytochemistry and electrophysiology of T-type calcium channels

Sanda Maria Cretoiu; Beatrice Mihaela Radu; Adela Banciu; Daniel Dumitru Banciu; Dragos Cretoiu; Laura Cristina Ceafalan; Laurentiu M. Popescu

Recently, telocytes (TCs) were described as a new cell type in the interstitial space of many organs, including myometrium. TCs are cells with very long, distinctive extensions named telopodes (Tps). It is suggested that TCs play a major role in intercellular signaling, as well as in morphogenesis, especially in morphogenetic bioelectrical signaling. However, TC plasma membrane is yet unexplored regarding the presence and activity of ion channels and pumps. Here, we used a combination of in vitro immunofluorescence and patch-clamp technique to characterize T-type calcium channels in TCs. Myometrial TCs were identified in cell culture (non-pregnant and pregnant myometrium) as cells having very long Tps and which were positive for CD34 and platelet-derived growth factor receptor-α. Immunofluorescence analysis of the subfamily of T-type (transient) calcium channels CaV3.1 and CaV3.2 presence revealed the expression of these ion channels on the cell body and Tps of non-pregnant and pregnant myometrium TCs. The expression in TCs from the non-pregnant myometrium is less intense, being confined to the cell body for CaV3.2, while CaV3.1 was expressed both on the cell body and in Tps. Moreover, the presence of T-type calcium channels in TCs from non-pregnant myometrium is also confirmed by applying brief ramp depolarization protocols. In conclusion, our results show that T-type calcium channels are present in TCs from human myometrium and could participate in the generation of endogenous bioelectric signals responsible for the regulation of the surrounding cell behavior, during pregnancy and labor.


Lasers in Medical Science | 2014

Near-infrared low-level laser stimulation of telocytes from human myometrium

Razvan-Alexandru Campeanu; Beatrice Mihaela Radu; Sanda Maria Cretoiu; Daniel Dumitru Banciu; Adela Banciu; Dragos Cretoiu; Laurentiu M. Popescu

Telocytes (TCs) are a brand-new cell type frequently observed in the interstitial space of many organs (see www.telocytes.com). TCs are defined by very long (tens of micrometers) and slender prolongations named telopodes. At their level, dilations—called podoms (~300xa0nm), alternate with podomers (80–100xa0nm). TCs were identified in a myometrial interstitial cell culture based on morphological criteria and by CD34 and PDGF receptor alpha (PDGFRα) immunopositivity. However, the mechanism(s) of telopodes formation and/or elongation and ramification is not known. We report here the low-level laser stimulation (LLLS) using a 1,064-nm neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (with an output power of 60xa0mW) of the telopodal lateral extension (TLE) growth in cell culture. LLLS of TCs determines a higher growth rate of TLE in pregnant myometrium primary cultures (10.3u2009±u20091.0xa0μm/min) compared to nonpregnant ones (6.6u2009±u20090.9xa0μm/min). Acute exposure (30xa0min) of TCs from pregnant myometrium to 1xa0μM mibefradil, a selective inhibitor of T-type calcium channels, determines a significant reduction in the LLLS TLE growth rate (5.7u2009±u20090.8xa0μm/min) compared to LLLS per se in same type of samples. Meanwhile, chronic exposure (24xa0h) completely abolishes the LLLS TLE growth in both nonpregnant and pregnant myometria. The initial direction of TLE growth was modified by LLLS, the angle of deviation being more accentuated in TCs from human pregnant myometrium than in TCs from nonpregnant myometrium. In conclusion, TCs from pregnant myometrium are more susceptible of reacting to LLLS than those from nonpregnant myometrium. Therefore, some implications are emerging for low-level laser therapy (LLLT) in uterine regenerative medicine.


Biology of Reproduction | 2015

Uterine Telocytes: A Review of Current Knowledge

Iurie Roatesi; Beatrice Mihaela Radu; Dragos Cretoiu; Sanda Maria Cretoiu

ABSTRACT Telocytes (TCs), a novel cell type, are briefly defined as interstitial cells with telopodes (Tps). However, a specific immunocytochemical marker has not yet been found; therefore, electron microscopy is currently the only accurate method for identifying TCs. TCs are considered to have a mesenchymal origin. Recently proteomic analysis, microarray-based gene expression analysis, and the micro-RNA signature clearly showed that TCs are different from fibroblasts, mesenchymal stem cells, and endothelial cells. The dynamics of Tps were also revealed, and some electrophysiological properties of TCs were described (such as membrane capacitance, input resistance, membrane resting potential, and absence of action potentials correlated with different ionic currents characteristics), which can be used to distinguish uterine TCs from smooth muscle cells (SMCs). Here, we briefly present the most recent findings on the characteristics of TCs and their functions in human pregnant and nonpregnant uteri.


Mediators of Inflammation | 2013

Neurovascular unit in chronic pain.

Beatrice Mihaela Radu; Placido Bramanti; Francesco Osculati; Maria-Luisa Flonta; Mihai Radu; Giuseppe Bertini; Paolo F. Fabene

Chronic pain is a debilitating condition with major socioeconomic impact, whose neurobiological basis is still not clear. An involvement of the neurovascular unit (NVU) has been recently proposed. In particular, the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB), two NVU key players, may be affected during the development of chronic pain; in particular, transient permeabilization of the barrier is suggested by several inflammatory- and nerve-injury-based pain models, and we argue that the clarification of molecular BBB/BSCB permeabilization events will shed new light in understanding chronic pain mechanisms. Possible biases in experiments supporting this theory and its translational potentials are discussed. Moving beyond an exclusive focus on the role of the endothelium, we propose that our understanding of the mechanisms subserving chronic pain will benefit from the extension of research efforts to the NVU as a whole. In this view, the available evidence on the interaction between analgesic drugs and the NVU is here reviewed. Chronic pain comorbidities, such as neuroinflammatory and neurodegenerative diseases, are also discussed in view of NVU changes, together with innovative pharmacological solutions targeting NVU components in chronic pain treatment.


Cellular and Molecular Neurobiology | 2012

Dual Effect of Methylglyoxal on the Intracellular Ca 2+ Signaling and Neurite Outgrowth in Mouse Sensory Neurons

Beatrice Mihaela Radu; Diana Ionela Dumitrescu; Cosmin Catalin Mustaciosu; Mihai Radu

The formation of advanced glycation end products is one of the major factors involved in diabetic neuropathy, aging, and neurodegenerative diseases. Reactive carbonyl compounds, such as methylglyoxal (MG), play a key role in cross-linking to various proteins in the extracellular matrix, especially in neurons, which have a high rate of oxidative metabolism. The MG effect was tested on dorsal root ganglia primary neurons in cultures from adult male Balb/c mice. Lower MG doses contribute to an increased adherence of neurons on their support and an increased glia proliferation, as proved by MTS assay and bright-field microscopy. Time-lapse fluorescence microscopy by Fura-2 was performed for monitoring the relative fluorescence ratio changes (ΔR/R0) upon depolarization and immunofluorescence staining for quantifying the degree of neurites extension. The relative change in fluorescence ratio modifies the amplitude and dispersion depending on the subtype of sensory neurons, the medium-sized neurons are more sensitive to MG treatment when compared to small ones. Low MG concentrations (0–150xa0μM) increase neuronal viability, excitability, and the capacity of neurite extension, while higher concentrations (250–750xa0μM) are cytotoxic in a dose-dependent manner. In our opinion, MG could be metabolized by the glyoxalase system inside sensory neurons up to a threshold concentration, afterwards disturbing the cell equilibrium. Our study points out that MG has a dual effect concentration dependent on the neuronal viability, excitability, and neurite outgrowth, but only the excitability changes are soma-sized dependent. In conclusion, our data may partially explain the distinct neuronal modifications in various neurodegenerative pathologies.


Seminars in Cell & Developmental Biology | 2017

Telocytes heterogeneity: from cellular morphology to functional evidence

Dragos Cretoiu; Beatrice Mihaela Radu; Adela Banciu; Daniel Dumitru Banciu; Sanda Maria Cretoiu

Telocytes (TCs), located ubiquitously in the internal organs of vertebrates, are a heterogeneous, recently described, cell population of the stromal space. Characterized by lengthy cytoplasmic extensions that can reach tens of microns and are called telopodes (Tps), TCs are difficult to see using conventional microscopes. It was the electron microscopy which led to their first identification and Popescus team the first responsible for the reconstructions indicating TCs organization in a three-dimensional (3D) network that is believed to be accountable for the complex roles of TCs. Gradually, it became increasingly evident that TCs are difficult to characterize in terms of immunophenotype and that their phenotype is different depending on the location and needs of the tissue at one time. This review discusses the growing body of evidence accumulated since TCs were discovered and highlights how the complex interplay between TCs and stem cells might be of importance for tissue engineering and regenerative medicine.


Cellular and Molecular Neurobiology | 2013

TRPV1 Properties in Thoracic Dorsal Root Ganglia Neurons are Modulated by Intraperitoneal Capsaicin Administration in the Late Phase of Type-1 Autoimmune Diabetes

Beatrice Mihaela Radu; Adina Daniela Iancu; Diana Ionela Dumitrescu; Maria Luisa Flonta; Mihai Radu

Pharmacological therapies in type 1 diabetes for efficient control of glycemia and changes in pain alterations due to diabetic neuropathy are a continuous challenge. Transient receptor potential vanilloid type 1 (TRPV1) from dorsal root ganglia (DRG) neurons is one of the main pharmacological targets in diabetes, and its ligand capsaicin can be a promising compound for blood-glucose control. Our goal is to elucidate the effect of intraperitoneal (i.p.) capsaicin administration in type 1 diabetic mice against TRPV1 receptors from pancreatic DRG primary afferent neurons. A TCR+/−/Ins-HA+/− diabetic mice (dTg) was used, and patch-clamp and immunofluorescence microscopy measurements have been performed on thoracic T9–T12 DRG neurons. Capsaicin (800xa0μg/kg, i.p. three successive days) administration in the late-phase diabetes reduces blood-glucose levels, partly reverses the TRPV1 current density and recovery time constant, without any effect on TRPV1 expression general pattern, in dTg mice. A TRPV1 hypoalgesia profile was observed in late-phase diabetes, which was partly reversed to normoalgesic profile upon capsaicin i.p. administration. According to the soma dimensions of the thoracic DRG neurons, a detailed analysis of the TRPV1 expression upon capsaicin i.p. treatment was done, and the proportion of large A-fiber neurons expressing TRPV1 increased in dTg capsaicin-treated mice. In conclusion, the benefits of low-dose capsaicin intraperitoneal treatment in late-phase type-1 diabetes should be further exploited.


Neurochemistry International | 2013

New players in the neurovascular unit: Insights from experimental and clinical epilepsy

Giuseppe Bertini; Placido Bramanti; Gabriela Constantin; Michele Pellitteri; Beatrice Mihaela Radu; Mihai Radu; Paolo F. Fabene

The conventional notion that neurons are exclusively responsible for brain signaling is increasingly challenged by the idea that brain function in fact depends on a complex interplay between neurons, glial cells, vascular endothelium, and immune-related blood cells. Recent data demonstrates that neuronal activity is profoundly affected by an entire cellular and extracellular orchestra, the so-called neurovascular unit (NVU). Among the musical instruments of this orchestra, there may be molecules long-known in biomedicine as important mediators of inflammatory and immune responses in the organism, as well as non-neuronal cells, e.g., leukocytes. We here review recent evidence on the structure and function of the NVU, both in the healthy brain and in pathological conditions, such as the abnormal NVU activation observed in epilepsy. We will argue that a better understanding of NVU function will require the addition of new players to the orchestra.


Epilepsy Research | 2017

Nonsteroidal anti-inflammatory drugs in clinical and experimental epilepsy

Beatrice Mihaela Radu; Florin Bogdan Epureanu; Mihai Radu; Paolo F. Fabene; Giuseppe Bertini

Current antiepileptic drugs have limited efficacy and provide little or no benefits in 30% of the patients. Given that a role for brain inflammation in epilepsy has been repeatedly reported in recent years, the potential of anti-inflammatory drugs should be explored in depth, as they may provide new therapeutical approaches in preventing or reducing epileptogenesis. Here, we review preclinical (both in vivo and in vitro) and clinical epilepsy studies in which nonsteroidal antiinflammatory drugs (NSAIDs), i.e. cyclooxygenase-2 (COX-2) selective inhibitors (COXIBs) and nonselective NSAIDs, were used for seizure control. The effects of NSAIDs are reviewed in animal models of both chemical (pilocarpine, kainic acid, pentylenetetrazol, or carbachol administration) and electrical (tetanic hippocampal stimulation, electroshock) seizure induction. In the pilocarpine model, NSAIDs are neuroprotective, reduce mossy fiber sprouting or diminish P-glycoprotein upregulation, but only rarely protect against seizures. While neuroprotective effects have also been observed in the kainic acid model, NSAIDs tend in general to worsen seizure activity. Effects of COXIB administration in the pentylenetetrazol-induced seizures model are variable, alternating from protection against seizures to null effects or even increased incidence of convulsions. Moreover, NSAIDs tested in the tetanic hippocampal stimulation model diminished the seizure-associated P-glycoprotein upregulation, but were not very effective in seizure control. NSAIDs efficacy in experimental in vivo epilepsy studies may be influenced by multiple factors, including the timing of administration (before or after status epilepticus induction), the animal model of epilepsy or some of the signaling pathways involved in cyclooxygenase induction (e.g. prostaglandins and their receptors). On the other hand, the few clinical studies on the use of NSAIDs in neurological pathologies accompanied/characterized by seizures indicate that nonselective NSAIDs (e.g. aspirin) in prolonged, low-dose treatments may offer protection against seizures and stroke-like events. No clinical trials in epileptic patients using COXIBs have been conducted so far, as several international drug-control authorities have withdrawn these drugs from the market; future studies should focus on improved COXIB formulations. We argue that, while the available evidence is still inconclusive, the potential therapeutic benefits of controlling and diminishing brain inflammation in the treatment of epilepsy should be actively explored.


Cell Biochemistry and Biophysics | 2014

Advanced Type 1 Diabetes is Associated with ASIC Alterations in Mouse Lower Thoracic Dorsal Root Ganglia Neurons

Beatrice Mihaela Radu; Diana Ionela Dumitrescu; Adela Marin; Daniel Dumitru Banciu; Adina Daniela Iancu; Tudor Selescu; Mihai Radu

Acid-sensing ion channels (ASICs) from dorsal root ganglia (DRG) neurons are proton sensors during ischemia and inflammation. Little is known about their role in type 1 diabetes (T1D). Our study was focused on ASICs alterations determined by advanced T1D status. Primary neuronal cultures were obtained from lower (T9–T12) thoracic DRG neurons from Balb/c and TCR-HA+/−/Ins-HA+/− diabetic male mice (16xa0weeks of age). Patch-clamp recordings indicate a change in the number of small DRG neurons presenting different ASIC-type currents. Multiple molecular sites of ASICs are distinctly affected in T1D, probably due to particular steric constraints for glycans accessibility to the active site: (i) ASIC1 current inactivates faster, while ASIC2 is slower; (ii) PcTx1 partly reverts diabetes effects against ASIC1- and ASIC2-inactivations; (iii) APETx2 maintains unaltered potency against ASIC3 current amplitude, but slows ASIC3 inactivation. Immunofluorescence indicates opposite regulation of different ASIC transcripts while qRT-PCR shows that ASIC mRNA ranking (ASIC2xa0>xa0ASIC1xa0>xa0ASIC3) remains unaltered. In conclusion, our study has identified biochemical and biophysical ASIC changes in lower thoracic DRG neurons due to advanced T1D. As hypoalgesia is present in advanced T1D, ASICs alterations might be the cause or the consequence of diabetic insensate neuropathy.

Collaboration


Dive into the Beatrice Mihaela Radu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adela Banciu

University of Bucharest

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dragos Cretoiu

Carol Davila University of Medicine and Pharmacy

View shared research outputs
Top Co-Authors

Avatar

Sanda Maria Cretoiu

Carol Davila University of Medicine and Pharmacy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge