Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Béatrice Nal is active.

Publication


Featured researches published by Béatrice Nal.


Journal of Virology | 2008

H5-Type Influenza Virus Hemagglutinin Is Functionally Recognized by the Natural Killer-Activating Receptor NKp44

Joanna W. Ho; Oren Hershkovitz; Malik Peiris; Alon Zilka; Ahuva Bar-Ilan; Béatrice Nal; Kid Chu; Mateusz Kudelko; Yiu Wing Kam; Hagit Achdout; Michal Mandelboim; Ralf Altmeyer; Ofer Mandelboim; Roberto Bruzzone; Angel Porgador

ABSTRACT Antiviral immune defenses involve natural killer (NK) cells. We previously showed that the NK-activating receptor NKp44 is involved in the functional recognition of H1-type influenza virus strains by NK cells. In the present study, we investigated the interaction of NKp44 and the hemagglutinin of a primary influenza virus H5N1 isolate. Here we show that recombinant NKp44 recognizes H5-expressing cells and specifically interacts with soluble H5 hemagglutinin. H5-pseudotyped lentiviral particles bind to NK cells expressing NKp44. Following interaction with target cells expressing H5, pseudotyped lentiviral particles, or membrane-associated H5, NK cells show NKp44-mediated induced activity. These findings indicate that NKp44-H5 interactions induce functional NK activation.


Journal of Virology | 2008

The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles

Y. L. Siu; K. T. Teoh; J. Lo; C. M. Chan; F. Kien; Nicolas Escriou; S. W. Tsao; John M. Nicholls; Ralf Altmeyer; J. S. M. Peiris; Roberto Bruzzone; Béatrice Nal

ABSTRACT The production of virus-like particles (VLPs) constitutes a relevant and safe model to study molecular determinants of virion egress. The minimal requirement for the assembly of VLPs for the coronavirus responsible for severe acute respiratory syndrome in humans (SARS-CoV) is still controversial. Recent studies have shown that SARS-CoV VLP formation depends on either M and E proteins or M and N proteins. Here we show that both E and N proteins must be coexpressed with M protein for the efficient production and release of VLPs by transfected Vero E6 cells. This suggests that the mechanism of SARS-CoV assembly differs from that of other studied coronaviruses, which only require M and E proteins for VLP formation. When coexpressed, the native envelope trimeric S glycoprotein is incorporated onto VLPs. Interestingly, when a fluorescent protein tag is added to the C-terminal end of N or S protein, but not M protein, the chimeric viral proteins can be assembled within VLPs and allow visualization of VLP production and trafficking in living cells by state-of-the-art imaging technologies. Fluorescent VLPs will be used further to investigate the role of cellular machineries during SARS-CoV egress.


PLOS ONE | 2009

Efficient Assembly and Secretion of Recombinant Subviral Particles of the Four Dengue Serotypes Using Native prM and E Proteins

Peigang Wang; Mateusz Kudelko; Joanne Lo; Lewis Siu; Kevin Tsz Hin Kwok; Martin Sachse; John M. Nicholls; Roberto Bruzzone; Ralf Altmeyer; Béatrice Nal

Background Flavivirus infected cells produce infectious virions and subviral particles, both of which are formed by the assembly of prM and E envelope proteins and are believed to undergo the same maturation process. Dengue recombinant subviral particles have been produced in cell cultures with either modified or chimeric proteins but not using the native forms of prM and E. Methodology/Principal Findings We have used a codon optimization strategy to obtain an efficient expression of native viral proteins and production of recombinant subviral particles (RSPs) for all four dengue virus (DV) serotypes. A stable HeLa cell line expressing DV1 prME was established (HeLa-prME) and RSPs were analyzed by immunofluorescence and transmission electron microscopy. We found that E protein is mainly present in the endoplasmic reticulum (ER) where assembly of RSPs could be observed. Biochemical characterization of DV1 RSPs secretion revealed both prM protein cleavage and homodimerization of E proteins before their release into the supernatant, indicating that RSPs undergo a similar maturation process as dengue virus. Pulse chase experiment showed that 8 hours are required for the secretion of DV1 RSPs. We have used HeLa-prME to develop a semi-quantitative assay and screened a human siRNA library targeting genes involved in membrane trafficking. Knockdown of 23 genes resulted in a significant reduction in DV RSP secretion, whereas for 22 others we observed an increase of RSP levels in cell supernatant. Conclusions/Significance Our data describe the efficient production of RSPs containing native prM and E envelope proteins for all dengue serotypes. Dengue RSPs and corresponding producing cell lines are safe and novel tools that can be used in the study of viral egress as well as in the development of vaccine and drugs against dengue virus.


Molecular Biology of the Cell | 2010

The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis.

Kim Tat Teoh; Yu Lam Siu; Wing Lim Chan; Marc A. Schlüter; Chia Jen Liu; J. S. Malik Peiris; Roberto Bruzzone; Benjamin Margolis; Béatrice Nal

Intercellular tight junctions define epithelial apicobasal polarity and form a physical fence which protects underlying tissues from pathogen invasions. PALS1, a tight junction-associated protein, is a member of the CRUMBS3-PALS1-PATJ polarity complex, which is crucial for the establishment and maintenance of epithelial polarity in mammals. Here we report that the carboxy-terminal domain of the SARS-CoV E small envelope protein (E) binds to human PALS1. Using coimmunoprecipitation and pull-down assays, we show that E interacts with PALS1 in mammalian cells and further demonstrate that the last four carboxy-terminal amino acids of E form a novel PDZ-binding motif that binds to PALS1 PDZ domain. PALS1 redistributes to the ERGIC/Golgi region, where E accumulates, in SARS-CoV-infected Vero E6 cells. Ectopic expression of E in MDCKII epithelial cells significantly alters cyst morphogenesis and, furthermore, delays formation of tight junctions, affects polarity, and modifies the subcellular distribution of PALS1, in a PDZ-binding motif-dependent manner. We speculate that hijacking of PALS1 by SARS-CoV E plays a determinant role in the disruption of the lung epithelium in SARS patients.


Vaccine | 2007

Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro

Yiu Wing Kam; Francois Kien; Anjeanette Roberts; Yan Chung Cheung; Elaine W. Lamirande; Leatrice Vogel; Shui Ling Chu; Jane Tse; Jeannette Guarner; Sherif R. Zaki; Kanta Subbarao; Malik Peiris; Béatrice Nal; Ralf Altmeyer

Abstract Vaccine-induced antibodies can prevent or, in the case of feline infectious peritonitis virus, aggravate infections by coronaviruses. We investigated whether a recombinant native full-length S-protein trimer (triSpike) of severe acute respiratory syndrome coronavirus (SARS-CoV) was able to elicit a neutralizing and protective immune response in animals and analyzed the capacity of anti-S antibodies to mediate antibody-dependent enhancement (ADE) of virus entry in vitro and enhancement of replication in vivo. SARS-CoV-specific serum and mucosal immunoglobulins were readily detected in immunized animals. Serum IgG blocked binding of the S-protein to the ACE2 receptor and neutralized SARS-CoV infection in vitro. Entry into human B cell lines occurred in a FcγRII-dependent and ACE2-independent fashion indicating that ADE of virus entry is a novel cell entry mechanism of SARS-CoV. Vaccinated animals showed no signs of enhanced lung pathology or hepatitis and viral load was undetectable or greatly reduced in lungs following challenge with SARS-CoV. Altogether our results indicate that a recombinant trimeric S protein was able to elicit an efficacious protective immune response in vivo and warrant concern in the safety evaluation of a human vaccine against SARS-CoV.


Journal of Biological Chemistry | 2012

Class II ADP-ribosylation Factors Are Required for Efficient Secretion of Dengue Viruses

Mateusz Kudelko; Jean-Baptiste Brault; Kevin W.H. Kwok; Ming Yuan Li; Nathalie Pardigon; J. S. Malik Peiris; Roberto Bruzzone; Philippe Desprès; Béatrice Nal; Pei Gang Wang

Background: To date, very few cellular factors required for secretion of flaviviruses have been described. Results: Simultaneous depletion of class II Arf (Arf4 and Arf5) blocks dengue flavivirus secretion, without altering the constitutive secretory pathway. Dengue glycoprotein prM interacts with Arf4 and Arf5. Conclusion: Arf4 and Arf5 play a crucial role in dengue flavivirus secretion. Significance: Our findings reveal a molecular mechanism of dengue flavivirus secretion. Identification and characterization of virus-host interactions are very important steps toward a better understanding of the molecular mechanisms responsible for disease progression and pathogenesis. To date, very few cellular factors involved in the life cycle of flaviviruses, which are important human pathogens, have been described. In this study, we demonstrate a crucial role for class II Arf proteins (Arf4 and Arf5) in the dengue flavivirus life cycle. We show that simultaneous depletion of Arf4 and Arf5 blocks recombinant subviral particle secretion for all four dengue serotypes. Immunostaining analysis suggests that class II Arf proteins are required at an early pre-Golgi step for dengue virus secretion. Using a horseradish peroxidase protein fused to a signal peptide, we show that class II Arfs act specifically on dengue virus secretion without altering the secretion of proteins through the constitutive secretory pathway. Co-immunoprecipitation data demonstrate that the dengue prM glycoprotein interacts with class II Arf proteins but not through its C-terminal VXPX motif. Finally, experiments performed with replication-competent dengue and yellow fever viruses demonstrate that the depletion of class II Arfs inhibits virus secretion, thus confirming their implication in the virus life cycle, although data obtained with West Nile virus pointed out the differences in virus-host interactions among flaviviruses. Our findings shed new light on a molecular mechanism used by dengue viruses during the late stages of the life cycle and demonstrate a novel function for class II Arf proteins.


Journal of Virology | 2011

Anti-Severe Acute Respiratory Syndrome Coronavirus Spike Antibodies Trigger Infection of Human Immune Cells via a pH- and Cysteine Protease-Independent FcγR Pathway

M. Jaume; M. S. Yip; Cy Cheung; H. L. Leung; P. H. Li; F. Kien; I. Dutry; B. Callendret; Nicolas Escriou; Ralf Altmeyer; Béatrice Nal; M. Daeron; R. Bruzzone; J. S. M. Peiris

ABSTRACT Public health measures successfully contained outbreaks of the severe acute respiratory syndrome coronavirus (SARS-CoV) infection. However, the precursor of the SARS-CoV remains in its natural bat reservoir, and reemergence of a human-adapted SARS-like coronavirus remains a plausible public health concern. Vaccination is a major strategy for containing resurgence of SARS in humans, and a number of vaccine candidates have been tested in experimental animal models. We previously reported that antibody elicited by a SARS-CoV vaccine candidate based on recombinant full-length Spike-protein trimers potentiated infection of human B cell lines despite eliciting in vivo a neutralizing and protective immune response in rodents. These observations prompted us to investigate the mechanisms underlying antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro. We demonstrate here that anti-Spike immune serum, while inhibiting viral entry in a permissive cell line, potentiated infection of immune cells by SARS-CoV Spike-pseudotyped lentiviral particles, as well as replication-competent SARS coronavirus. Antibody-mediated infection was dependent on Fcγ receptor II but did not use the endosomal/lysosomal pathway utilized by angiotensin I converting enzyme 2 (ACE2), the accepted receptor for SARS-CoV. This suggests that ADE of SARS-CoV utilizes a novel cell entry mechanism into immune cells. Different SARS vaccine candidates elicit sera that differ in their capacity to induce ADE in immune cells despite their comparable potency to neutralize infection in ACE2-bearing cells. Our results suggest a novel mechanism by which SARS-CoV can enter target cells and illustrate the potential pitfalls associated with immunization against it. These findings should prompt further investigations into SARS pathogenesis.


Journal of Virology | 2012

A Human Coronavirus Responsible for the Common Cold Massively Kills Dendritic Cells but Not Monocytes

Mariana Mesel-Lemoine; Jean Millet; Pierre-Olivier Vidalain; Helen K. W. Law; Astrid Vabret; Valérie Lorin; Nicolas Escriou; Matthew L. Albert; Béatrice Nal; Frédéric Tangy

ABSTRACT Human coronaviruses are associated with upper respiratory tract infections that occasionally spread to the lungs and other organs. Although airway epithelial cells represent an important target for infection, the respiratory epithelium is also composed of an elaborate network of dendritic cells (DCs) that are essential sentinels of the immune system, sensing pathogens and presenting foreign antigens to T lymphocytes. In this report, we show that in vitro infection by human coronavirus 229E (HCoV-229E) induces massive cytopathic effects in DCs, including the formation of large syncytia and cell death within only few hours. In contrast, monocytes are much more resistant to infection and cytopathic effects despite similar expression levels of CD13, the membrane receptor for HCoV-229E. While the differentiation of monocytes into DCs in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 requires 5 days, only 24 h are sufficient for these cytokines to sensitize monocytes to cell death and cytopathic effects when infected by HCoV-229E. Cell death induced by HCoV-229E is independent of TRAIL, FasL, tumor necrosis factor alpha, and caspase activity, indicating that viral replication is directly responsible for the observed cytopathic effects. The consequence of DC death at the early stage of HCoV-229E infection may have an impact on the early control of viral dissemination and on the establishment of long-lasting immune memory, since people can be reinfected multiple times by HCoV-229E.


PLOS ONE | 2012

A single residue substitution in the receptor-binding domain of H5N1 hemagglutinin is critical for packaging into pseudotyped lentiviral particles

Dong-Jiang Tang; Yuen-Man Lam; Yu-Lam Siu; Chi-Hong Lam; Shui-Ling Chu; J. S. Malik Peiris; Philippe Buchy; Béatrice Nal; Roberto Bruzzone

Background Serological studies for influenza infection and vaccine response often involve microneutralization and hemagglutination inhibition assays to evaluate neutralizing antibodies against human and avian influenza viruses, including H5N1. We have previously characterized lentiviral particles pseudotyped with H5-HA (H5pp) and validated an H5pp-based assay as a safe alternative for high-throughput serological studies in BSL-2 facilities. Here we show that H5-HAs from different clades do not always give rise to efficient production of H5pp and the underlying mechanisms are addressed. Methodology/Findings We have carried out mutational analysis to delineate the molecular determinants responsible for efficient packaging of HA from A/Cambodia/40808/2005 (H5Cam) and A/Anhui/1/2005 (H5Anh) into H5pp. Our results demonstrate that a single A134V mutation in the 130-loop of the receptor binding domain is sufficient to render H5Anh the ability to generate H5Anh-pp efficiently, whereas the reverse V134A mutation greatly hampers production of H5Cam-pp. Although protein expression in total cell lysates is similar for H5Anh and H5Cam, cell surface expression of H5Cam is detected at a significantly higher level than that of H5Anh. We further demonstrate by several independent lines of evidence that the behaviour of H5Anh can be explained by a stronger binding to sialic acid receptors implicating residue 134. Conclusions We have identified a single A134V mutation as the molecular determinant in H5-HA for efficient incorporation into H5pp envelope and delineated the underlying mechanism. The reduced binding to sialic acid receptors as a result of the A134V mutation not only exerts a critical influence in pseudotyping efficiency of H5-HA, but has also an impact at the whole virus level. Because A134V substitution has been reported as a naturally occurring mutation in human host, our results may have implications for the understanding of human host adaptation of avian influenza H5N1 viruses.


PLOS ONE | 2012

Ezrin Interacts with the SARS Coronavirus Spike Protein and Restrains Infection at the Entry Stage

Jean Millet; François Kien; Cy Cheung; Yu-Lam Siu; Wy Chan; Huiying Li; Hiu-Lan Leung; Martial Jaume; Roberto Bruzzone; J. S. M. Peiris; Ralf Altmeyer; Béatrice Nal

Background Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S-pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.

Collaboration


Dive into the Béatrice Nal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf Altmeyer

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Cy Cheung

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Ralf Altmeyer

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jean Millet

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lewis Siu

University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge