Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beatrice Rubin is active.

Publication


Featured researches published by Beatrice Rubin.


The Journal of Clinical Endocrinology and Metabolism | 2012

Effect of KCNJ5 Mutations on Gene Expression in Aldosterone-Producing Adenomas and Adrenocortical Cells

Silvia Monticone; Namita G. Hattangady; Koshiro Nishimoto; Franco Mantero; Beatrice Rubin; Maria Verena Cicala; Raffaele Pezzani; Richard J. Auchus; Hans K. Ghayee; Hirotaka Shibata; Isao Kurihara; Tracy A. Williams; Judith G. Giri; Roni J. Bollag; Michael A. Edwards; Carlos M. Isales; William E. Rainey

CONTEXT Primary aldosteronism is a heterogeneous disease that includes both sporadic and familial forms. A point mutation in the KCNJ5 gene is responsible for familial hyperaldosteronism type III. Somatic mutations in KCNJ5 also occur in sporadic aldosterone producing adenomas (APA). OBJECTIVE The objective of the study was to define the effect of the KCNJ5 mutations on gene expression and aldosterone production using APA tissue and human adrenocortical cells. METHODS A microarray analysis was used to compare the transcriptome profiles of female-derived APA samples with and without KCNJ5 mutations and HAC15 adrenal cells overexpressing either mutated or wild-type KCNJ5. Real-time PCR validated a set of differentially expressed genes. Immunohistochemical staining localized the KCNJ5 expression in normal adrenals and APA. RESULTS We report a 38% (18 of 47) prevalence of KCNJ5 mutations in APA. KCNJ5 immunostaining was highest in the zona glomerulosa of NA and heterogeneous in APA tissue, and KCNJ5 mRNA was 4-fold higher in APA compared with normal adrenals (P < 0.05). APA with and without KCNJ5 mutations displayed slightly different gene expression patterns, notably the aldosterone synthase gene (CYP11B2) was more highly expressed in APA with KCNJ5 mutations. Overexpression of KCNJ5 mutations in HAC15 increased aldosterone production and altered expression of 36 genes by greater than 2.5-fold (P < 0.05). Real-time PCR confirmed increases in CYP11B2 and its transcriptional regulator, NR4A2. CONCLUSIONS KCNJ5 mutations are prevalent in APA, and our data suggest that these mutations increase expression of CYP11B2 and NR4A2, thus increasing aldosterone production.


The Journal of Clinical Endocrinology and Metabolism | 2014

Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing's syndrome: a European multicentric study.

Guido Di Dalmazi; Caroline Kisker; Davide Calebiro; Massimo Mannelli; Letizia Canu; Giorgio Arnaldi; Marcus Quinkler; Nada Rayes; Antoine Tabarin; Marie Laure Jullié; Franco Mantero; Beatrice Rubin; Jens Waldmann; Detlef K. Bartsch; Renato Pasquali; Martin J. Lohse; Bruno Allolio; Martin Fassnacht; Felix Beuschlein; Martin Reincke

CONTEXT Somatic mutations in PRKACA gene, encoding the catalytic subunit of protein kinase A (PKA), have been recently found in a high proportion of sporadic adenomas associated with Cushings syndrome. The aim was to analyze the PRKACA mutation in a large cohort of patients with adrenocortical masses. METHODS Samples from nine European centers were included (Germany, n = 4; Italy, n = 4; France, n = 1). Samples were drawn from 149 patients with nonsecreting adenomas (n = 32 + 2 peritumoral), subclinical hypercortisolism (n = 36), Cushings syndrome (n = 64 + 2 peritumoral), androgen-producing tumors (n = 4), adrenocortical carcinomas (n = 5 + 2 peritumoral), and primary bilateral macronodular adrenal hyperplasias (n = 8). Blood samples were available from patients with nonsecreting adenomas (n = 15), subclinical hypercortisolism (n = 10), and Cushings syndrome (n = 35). Clinical and hormonal data were collected. DNA amplification by PCR of exons 6 and 7 of the PRKACA gene and direct sequencing were performed. RESULTS PRKACA heterozygous mutations were found in 22/64 samples of Cushings syndrome patients (34%). No mutations were found in peritumoral tissue and blood samples or in other tumors examined. The c.617A>C (p.Leu206Arg) occurred in 18/22 patients. Furthermore, two novel mutations were identified: c.600_601insGTG/p.Cys200_Gly201insVal in three patients and c.639C>G+c.638_640insATTATCCTGAGG/p.Ser213Arg+p.Leu212_Lys214insIle-Ile-Leu-Arg) in one. All the mutations involved a region implicated in interaction between PKA regulatory and catalytic subunits. Patients with somatic PRKACA mutations showed higher levels of cortisol after dexamethasone test and a smaller adenoma size, compared with nonmutated subjects. CONCLUSIONS These data confirm and extend previous observations that somatic PRKACA mutations are specific for adrenocortical adenomas causing Cushings syndrome.


Endocrine-related Cancer | 2012

Combination of sorafenib and everolimus impacts therapeutically on adrenocortical tumor models

Barbara Mariniello; Antonio Rosato; Gaia Zuccolotto; Beatrice Rubin; Maria Verena Cicala; Isabella Finco; Maurizio Iacobone; Anna Chiara Frigo; Ambrogio Fassina; Raffaele Pezzani; Franco Mantero

Treatment options are insufficient in patients with adrenocortical carcinoma (ACC). Based on the efficacy of sorafenib, a tyrosine kinase inhibitor, and everolimus, an inhibitor of the mammalian target of rapamycin in tumors of different histotype, we aimed at testing these drugs in adrenocortical cancer models. The expression of vascular endothelial growth factor and its receptors (VEGFR1-2) was studied in 18 ACCs, 33 aldosterone-producing adenomas, 12 cortisol-producing adenomas, and six normal adrenal cortex by real-time PCR and immunohistochemistry and by immunoblotting in SW13 and H295R cancer cell lines. The effects of sorafenib and everolimus, alone or in combination, were tested on primary adrenocortical cultures and SW13 and H295R cells by evaluating cell viability and apoptosis in vitro and tumor growth inhibition of tumor cell line xenografts in immunodeficient mice in vivo. VEGF and VEGFR1-2 were detected in all samples and appeared over-expressed in two-thirds of ACC specimens. Dose-dependent inhibition of cell viability was observed particularly in SW13 cells after 24 h treatment with either drug; drug combination produced markedly synergistic growth inhibition. Increasing apoptosis was observed in tumor cells treated with the drugs, particularly with sorafenib. Finally, a significant mass reduction and increased survival were observed in SW13 xenograft model undergoing treatment with the drugs in combination. Our data suggest that an autocrine VEGF loop may exist within ACC. Furthermore, a combination of molecularly targeted agents may have both antiangiogenic and direct antitumor effects and thus could represent a new therapeutic tool for the treatment of ACC.


The Journal of Clinical Endocrinology and Metabolism | 2016

Genetic landscape of sporadic unilateral adrenocortical adenomas without PRKACA p.Leu206Arg mutation

Cristina L. Ronchi; Guido Di Dalmazi; Simon Faillot; Silviu Sbiera; Guillaume Assié; Isabel Weigand; Davide Calebiro; Thomas Schwarzmayr; Silke Appenzeller; Beatrice Rubin; Jens Waldmann; Carla Scaroni; Detlef K. Bartsch; Franco Mantero; Massimo Mannelli; Darko Kastelan; Iacopo Chiodini; Jérôme Bertherat; Martin Reincke; Tim M. Strom; Martin Fassnacht; Felix Beuschlein

CONTEXT Adrenocortical adenomas (ACAs) are among the most frequent human neoplasias. Genetic alterations affecting the cAMP/protein kinase A signaling pathway are common in cortisol-producing ACAs, whereas activating mutations in the gene encoding β-catenin (CTNNB1) have been reported in a subset of both benign and malignant adrenocortical tumors. However, the molecular pathogenesis of most ACAs is still largely unclear. OBJECTIVE The aim of the study was to define the genetic landscape of sporadic unilateral ACAs. DESIGN AND SETTING Next-generation whole-exome sequencing was performed on fresh-frozen tumor samples and corresponding normal tissue samples. PATIENTS Ninety-nine patients with ACAs (74 cortisol-producing and 25 endocrine inactive) negative for p.Leu206Arg PRKACA mutation. MAIN OUTCOME MEASURES Identification of known and/or new genetic alterations potentially involved in adrenocortical tumorigenesis and autonomous hormone secretion, genotype-phenotype correlation. RESULTS A total of 706 somatic protein-altering mutations were detected in 88 of 99 tumors (median, six per tumor). We identified several mutations in genes of the cAMP/protein kinase A pathway, including three novel mutations in PRKACA, associated with female sex and Cushings syndrome. We also found genetic alterations in different genes involved in the Wnt/β-catenin pathway, associated with larger tumors and endocrine inactivity, and notably, in many genes of the Ca(2+)-signaling pathway. Finally, by comparison of our genetic data with those available in the literature, we describe a comprehensive genetic landscape of unilateral ACAs. CONCLUSIONS This study provides the largest sequencing effort on ACAs to date. We thereby identified somatic alterations affecting known and novel pathways potentially involved in adrenal tumorigenesis.


PLOS ONE | 2016

Overexpression of L-Type amino acid transporter 1 (LAT1) and 2 (LAT2): Novel markers of neuroendocrine tumors

Susi Barollo; Loris Bertazza; Sara Watutantrige-Fernando; Simona Censi; Elisabetta Cavedon; Francesca Galuppini; Gianmaria Pennelli; Ambrogio Fassina; Marilisa Citton; Beatrice Rubin; Raffaele Pezzani; Clara Benna; Giuseppe Opocher; Maurizio Iacobone; Caterina Mian

Background 6-18F-fluoro-L-3,4-dihydroxyphenylalanine (18F-FDOPA) PET is a useful tool in the clinical management of pheochromocytoma (PHEO) and medullary thyroid carcinoma (MTC). 18F-FDOPA is a large neutral amino acid biochemically resembling endogenous L-DOPA and taken up by the L-type amino acid transporters (LAT1 and LAT2). This study was conducted to examine the expression of the LAT system in PHEO and MTC. Methods Real-time PCR and Western blot analyses were used to assess LAT1 and LAT2 gene and protein expression in 32 PHEO, 38 MTC, 16 normal adrenal medulla and 15 normal thyroid tissue samples. Immunohistochemistry method was applied to identify the proteins’ subcellular localization. Results LAT1 and LAT2 were overexpressed in both PHEO and MTC by comparison with normal tissues. LAT1 presented a stronger induction than LAT2, and their greater expression was more evident in PHEO (15.1- and 4.1-fold increases, respectively) than in MTC (9.9- and 4.1-fold increases, respectively). Furthermore we found a good correlation between LAT1/2 and GLUT1 expression levels. A positive correlation was also found between urinary noradrenaline and adrenaline levels and LAT1 gene expression in PHEO. The increased expression of LAT1 is also confirmed at the protein level, in both PHEO and MTC, with a strong cytoplasmic localization. Conclusions The present study is the first to provide experimental evidence of the overexpression in some NET cancers (such as PHEO or MTC) of L-type amino acid transporters, and the LAT1 isoform in particular, giving the molecular basis to explain the increase of the DOPA uptake seen in such tumor cells.


Investigational New Drugs | 2016

The aurora kinase inhibitor VX-680 shows anti-cancer effects in primary metastatic cells and the SW13 cell line

Raffaele Pezzani; Beatrice Rubin; Loris Bertazza; Marco Redaelli; Susi Barollo; Halenya Monticelli; Enke Baldini; Caterina Mian; Carla Mucignat; Carla Scaroni; Franco Mantero; Salvatore Ulisse; Maurizio Iacobone; Marco Boscaro

New therapeutic targets are needed to fight cancer. Aurora kinases (AK) were recently identified as vital key regulators of cell mitosis and have consequently been investigated as therapeutic targets in preclinical and clinical studies. Aurora kinase inhibitors (AKI) have been studied in many cancer types, but their potential capacity to limit or delay metastases has rarely been considered, and never in adrenal tissue. Given the lack of an effective pharmacological therapy for adrenal metastasis and adrenocortical carcinoma, we assessed AKI (VX-680, SNS314, ZM447439) in 2 cell lines (H295R and SW13 cells), 3 cell cultures of primary adrenocortical metastases (from lung cancer), and 4 primary adrenocortical tumor cell cultures. We also tested reversan, which is a P-gp inhibitor (a fundamental efflux pump that can extrude drugs), and we measured AK expression levels in 66 adrenocortical tumor tissue samples. Biomolecular and cellular tests were performed (such as MTT, thymidine assay, Wright’s staining, cell cycle and apoptosis analysis, Western blot, qRT-PCR, and mutation analysis). Our results are the first to document AK overexpression in adrenocortical carcinoma as well as in H295R and SW13 cell lines, thus proving the efficacy of AKI against adrenal metastases and in the SW13 cancer cell model. We also demonstrated that reversan and AKI Vx-680 are useless in the H295R cell model, and therefore should not be considered as potential treatments for ACC. Serine/threonine AK inhibition, essentially with VX-680, could be a promising, specific therapeutic tool for eradicating metastases in adrenocortical tissue.


Cancer Investigation | 2015

Mitogen-Activated Protein Kinase Pathway: Genetic Analysis of 95 Adrenocortical Tumors

Beatrice Rubin; Halenya Monticelli; Marco Redaelli; Carla Mucignat; Susi Barollo; Loris Bertazza; Caterina Mian; Corrado Betterle; Maurizio Iacobone; Ambrogio Fassina; Marco Boscaro; Raffaele Pezzani; Franco Mantero

Mitogen-activated protein kinase (MAPK) pathway is often deregulated in adrenocortical tumors (ACT) but with no concrete data confirming alteration rate. The objective of this study was to evaluate genetic alterations in key components of MAPK pathway. We found one BRAF mutation (p.V600E) and four HRAS silent mutations. No alteration was found in NRAS, KRAS, EGFR genes. The patient carrying BRAF mutation was further characterized by investigating his biomolecular and clinico-pathological findings. Therefore, even if MAPK signaling is activated in ACT, our results suggest that genetic alterations do not seem to represent a frequent mechanism of ACT tumorigenesis.


Experimental and Clinical Endocrinology & Diabetes | 2013

Functional significance of the novel H-RAS gene mutation M72I in a patient with medullary thyroid cancer.

Susi Barollo; Raffaele Pezzani; Andrea Cristiani; Loris Bertazza; Beatrice Rubin; Alessandro Bulfone; Maria Rosa Pelizzo; Torresan F; Franco Mantero; Gianmaria Pennelli; Stefano Moro; Caterina Mian

Medullary thyroid cancer (MTC) accounts for around 5-10% of all thyroid cancers. Though usually sporadic, 1 in 4 cases are of genetic origin, with germinal mutations in the RET proto-oncogene in familial forms and somatic mutations both in RET and in the RAS family genes in sporadic ones.This study aimed to characterize a rare H-RAS sequence variant -M72I- in a patient with sporadic MTC, focusing on its functional significance.Mutation analysis was performed for the RET, N-RAS, K-RAS and H-RAS genes by direct sequencing. Western blot analysis was done on 4 thyroid tissues from 1 patient carrying the M72I mutation in H-RAS, 1 with the Q61R mutation in H-RAS, 1 with no RET, H-RAS, K-RAS or N-RAS gene mutations, and 1 normal thyroid, using different antibodies against Erk1/2, phospho-Erk1/2 (Thr202/Tyr204), Akt and phospho-Akt (Ser473). Large-scale molecular dynamics simulations were completed for H-RAS wt and H-RAS M72I.Western blot analysis demonstrated that both MAPK and PI3K/Akt pathways were activated in the MTC patient carrying the M72I variant. In silico results showed conformational changes in H-RAS that could influence its activation by Sos and phosphate binding. Results of molecular dynamics were consistent with Western blot experiments.The M72I mutation may contribute effectively to proliferation and survival signaling throughout the MAPK and PI3K/Akt pathways. This work underscores the importance of studying genetic alterations that may lead to carcinogenesis.


Clinical Chemistry and Laboratory Medicine | 2017

Assessment of autoantibodies to interferon-ω in patients with autoimmune polyendocrine syndrome type 1: using a new immunoprecipitation assay

Maria del Pilar Larosa; Rachel Mackenzie; Peter Burne; Silvia Garelli; Susi Barollo; Stefano Masiero; Beatrice Rubin; Shu Chen; Jadwiga Furmaniak; Corrado Betterle; Bernard Rees Smith

Abstract Background: Measurements of autoantibodies to interferon-ω (IFN-ω) in patients with autoimmune polyglandular syndrome type 1 (APS-1) were performed using a new immunoprecipitation assay (IPA) based on 125I-labeled IFN-ω. Methods: We have developed and validated a new IPA based on 125I-labeled IFN-ω. Sera from 78 patients (aged 3–78 years) with clinically diagnosed APS-1, 35 first degree relatives, 323 patients with other adrenal or non-adrenal autoimmune diseases and 84 healthy blood donors were used in the study. In addition, clinical features and autoimmune regulator (AIRE) genotype for the APS-1 patients were analyzed. Results: Sixty-six (84.6%) of 78 APS-1 patients were positive for IFN-ω Ab using 125I-labeled IFN-ω IPA. IFN-ω Ab was the most prevalent of the six different autoantibodies tested in this group of APS-1 patients. All 66 IFN-ω Ab-positive APS-1 patients had AIRE mutations and 7 IFN-ω Ab-negative patients had no detectable AIRE mutations, whereas 3 (3.8%) patients were discrepant for IFN-ω Ab positivity and AIRE mutation results. Out of autoimmune controls studied, two patients were positive for IFN-ω Ab. Positivity and levels of IFN-ω Ab in the APS-1 patients studied were similar irrespective of patient’s clinical phenotype and AIRE genotype. Furthermore, IFN-ω Ab levels did not change over time (up to 36 years of disease duration) in 8 APS-1 patients studied. Conclusions: We have developed a novel, highly sensitive and specific assay for measurement of IFN-ω Ab. It provides a simple and convenient method for the assessment of patients with APS-1 and selecting patients suspected of having APS-1 for AIRE gene analysis.


Scientific Reports | 2017

Differential expression of the protein kinase A subunits in normal adrenal glands and adrenocortical adenomas

Isabel Weigand; Cristina L. Ronchi; Marthe Rizk-Rabin; Guido Di Dalmazi; Vanessa Wild; Kerstin Bathon; Beatrice Rubin; Davide Calebiro; Felix Beuschlein; Jérôme Bertherat; Martin Fassnacht; Silviu Sbiera

Somatic mutations in protein kinase A catalytic α subunit (PRKACA) were found to be causative for 30–40% of cortisol-producing adenomas (CPA) of the adrenal gland, rendering PKA signalling constitutively active. In its resting state, PKA is a stable and inactive heterotetramer, consisting of two catalytic and two regulatory subunits with the latter inhibiting PKA activity. The human genome encodes three different PKA catalytic subunits and four different regulatory subunits that are preferentially expressed in different organs. In normal adrenal glands all regulatory subunits are expressed, while CPA exhibit reduced protein levels of the regulatory subunit IIβ. In this study, we linked for the first time the loss of RIIβ protein levels to the PRKACA mutation status and found the down-regulation of RIIβ to arise post-transcriptionally. We further found the PKA subunit expression pattern of different tumours is also present in the zones of the normal adrenal cortex and demonstrate that the different PKA subunits have a differential expression pattern in each zone of the normal adrenal gland, indicating potential specific roles of these subunits in the regulation of different hormones secretion.

Collaboration


Dive into the Beatrice Rubin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caterina Mian

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla Scaroni

NewYork–Presbyterian Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge