Beatriz Almolda
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beatriz Almolda.
Frontiers in Bioscience | 2011
Beatriz Almolda; Berta González; Bernardo Castellano
Experimental autoimmune encephalomyelitis (EAE), a well-established model of multiple sclerosis, is characterised by microglial activation and lymphocytic infiltration. Lymphocytic activation through the antigen presentation process involves three main signals, the first provided by the engagement of major histocompatibility complex molecules (MHC) with the receptor of T-cells (TCR), the second by the binding of co-stimulatory molecules and the third by the secretion or expression of T-cell polarising molecules in specific populations of antigen presenting cells (APC). Microglial cells are considered to be the main APC population in the central nervous system (CNS). Specifically in EAE an increase in MHCs, co-stimulatory molecules and different T-cell polarising factors have been reported in microglia. However, a growing number of evidences suggest that dendritic cells (DCs), the main APC in the peripheral immune system, may also participate in the regulation of T-cell responses within the CNS. In this review we summarize the principal knowledge regarding microglial/macrophage function in EAE and their role in T-cell modulation, as well as the participation of DCs in the immune response associated to this disease.
Laboratory Investigation | 2011
Giles S. Kendall; Mariya Hirstova; Sigrun Horn; Dimitra Dafou; Alejandro Acosta-Saltos; Beatriz Almolda; Virginia Zbarsky; Prakasham Rumajogee; Heike Heuer; Bernardo Castellano; Klaus Pfeffer; Sergei A. Nedospasov; Donald Peebles; Gennadij Raivich
In the current study, we explored the role of TNF cluster cytokines on the lipopolysaccharide (LPS)-mediated, synergistic increase in brain injury after hypoxic ischemic insult in postnatal day 7 mice. Pretreatment with moderate doses of LPS (0.3 μg/g) resulted in particularly pronounced synergistic injury within 12 h. Systemic application of LPS alone resulted in a strong upregulation of inflammation-associated cytokines TNFα, LTβ, interleukin (IL) 1β, IL6, chemokines, such as CXCL1, and adhesion molecules E-Selectin, P-Selectin and intercellular adhesion molecule-1 (ICAM1), as well as a trend toward increased LTα levels in day 7 mouse forebrain. In addition, it was also associated with strong activation of brain blood vessel endothelia and local microglial cells. Here, deletion of the entire TNF gene cluster, removing TNFα, LTβ and LTα completely abolished endotoxin-mediated increase in the volume of cerebral infarct. Interestingly, the same deletion also prevented endothelial and microglial activation following application of LPS alone, suggesting the involvement of these cell types in bringing about the LPS-mediated sensitization to neonatal brain injury.
Journal of Neuroimmunology | 2010
Beatriz Almolda; Berta González; Bernardo Castellano
Antigen presentation, a key mechanism in immune responses, involves two main signals: the first is provided by the engagement of a major histocompatibility complex (MHC), class I or class II, with their TCR receptor in lymphocytes, whereas the second demands the participation of different co-stimulatory molecules, such as CD28, CTLA-4 and their receptors B7.1 and B7.2. Specific T-cell activation and deactivation are achieved through this signalling. The aim of our study is to characterise, in the acute experimental autoimmune encephalomyelitis (EAE) model in Lewis rat, the temporal expression pattern of these molecules as well as the cells responsible for their expression. To accomplish that, MBP-immunised female Lewis rats were daily examined for the presence of clinical symptoms and sacrificed, according to their clinical score, at different phases during EAE. Spinal cords were cut with a cryostat and processed for immunohistochemistry: MHC-class I and MHC-class II, co-stimulatory molecules (B7.1, B7.2, CD28, CTLA-4) and markers of dendritic cells (CD1 for immature cells and fascin for mature cells). Our results show that microglial cells are activated in the inductive phase and, during this phase and peak, they are able to express MHC-class I, MHC-class II and CD1, but not B7.1 and B7.2. This microglial phenotype may induce the apoptosis or anergy of infiltrated CD28+ lymphocytes observed around blood vessels and in the parenchyma. During the recovery phase, microglial cells express high MHC-class I and class II and, those located in the surroundings of blood vessels, displayed the B7.2 co-stimulatory molecule. These cells are competent to interact with CTLA-4+ cells, which indicate an active role of microglial cells in modulating the ending of the immune response by inducing lymphocyte activity inhibition and Treg activation. Once clinical symptomatology disappeared, some foci of activated microglial cells (MHC-class II+/B7.2+) were still present in concomitance with CTLA-4+ cells, suggesting a prolonged involvement of microglia in lymphocyte inhibition and tolerance promotion. In addition to microglia, during the inductive and recovery phases, we also found perivascular ED2+ cells and fascin+ cells which are able to migrate to the parenchyma and may play a role in lymphocytic regulation. Further studies to understand the specific function played by these cells are warranted.
PLOS ONE | 2011
Beatriz Almolda; Manuela Costa; María Montoya; Berta González; Bernardo Castellano
Experimental autoimmune encephalomyelitis (EAE), a well-established model of multiple sclerosis, is characterised by microglial activation and lymphocyte infiltration. Induction of EAE in Lewis rats produces an acute monophasic disease characterised by a single peak of disability followed by a spontaneous and complete recovery and a subsequent tolerance to further immunizations. In the current study we have performed a detailed analysis of the dynamics of different lymphocyte populations and cytokine profile along the induction, peak, recovery and post-recovery phases in this paradigm. MBP-injected rats were sacrificed attending exclusively to their clinical score, and the different populations of T-lymphocytes as well as the dynamics of different pro- and anti-inflammatory cytokines were analysed in the spinal cord by flow cytometry, immunohistochemistry and ELISA. Our results revealed that, during the induction and peak phases, in parallel to an increase in symptomatology, the number of CD3+ and CD4+ cells increased progressively, showing a Th1 phenotype, but unexpectedly during recovery, although clinical signs progressively decreased, the number and proportion of CD3+ and CD4+ populations remained unaltered. Interestingly, during this recovery phase, we observed a marked decrease of Th1 and an important increase in Th17 and T-reg cells. Moreover, our results indicate a specific cytokine expression profile along the EAE course characterized by no changes of IL10 and IL17 levels, decrease of IL21 on the peak, and high IL22 levels during the induction and peak phases that markedly decrease during recovery. In summary, these results revealed the existence of a specific pattern of lymphocyte infiltration and cytokine secretion along the different phases of the acute EAE model in Lewis rat that differs from those already described in chronic or relapsing-remitting mouse models, where Th17-cells were found mostly during the peak, suggesting a specific role of these lymphocytes and cytokines in the evolution of this acute EAE model.
Journal of Neuroimmunology | 2009
Beatriz Almolda; Manuela Costa; Maria Montoya; Berta González; Bernardo Castellano
CD4 is a molecule commonly expressed on the surface of T-helper lymphocytes with a recognized critical role in the antigen presentation process that has also been reported in monocytes and macrophages, although its role in these cells remains unknown. The objective of the present study was to analyze whether experimental conditions involving a potent acquired immune component, as occurs in experimental autoimmune encephalomyelitis (EAE), are able to induce CD4 expression in the population of microglia/macrophages. Myelin Basic Protein (MBP) immunized female Lewis rats, were examined at different phases during the course of EAE according to their clinical score. Spinal cords were analyzed by flow cytometry for CD11b, CD4 and CD45, by histochemistry for NDPase and by immunohistochemistry for ED2, Iba1, CD45 and CD4. Flow cytometry analysis showed that EAE induced CD4 expression in macrophages (CD11b+/CD45(high)) and microglia (in both CD11b+/CD45(intermediate) and CD11b+/CD45(low) phenotypes). Noticeably, microglial CD4 expression was found during the recovery phase and was maintained until 40 days post-induction. In agreement, immunolabelled sections revealed CD4 expression in microglial cells with ramified morphology during the recovery and post-recovery phases. In conclusion, our results indicate that, in this EAE model, perivascular cells, microglia and macrophages showed different dynamics during the course of the disease in close relation with symptomatology and that microglial cells expressed CD4 interestingly during the recovery phase, suggesting a role of microglial CD4 expression in the resolution of the immune response.
Glia | 2014
Beatriz Almolda; Nàdia Villacampa; Peter Manders; Juan Hidalgo; Iain L. Campbell; Berta González; Bernardo Castellano
Interleukin‐6 (IL‐6) is a pleiotropic cytokine with a key role in the control of inflammatory/immune responses. In the central nervous system (CNS), an increase in IL‐6 occurs in a wide range of pathological conditions such as excitotoxicity and traumatic brain injury. We evaluated the effects of astrocyte‐targeted production of IL‐6 in the CNS in the sterile‐nerve injury model of facial nerve axotomy. To accomplish this, facial nerve transection was performed in transgenic mice (glial fibrillary acidic protein [GFAP]‐IL6Tg) with IL‐6 production under the GFAP promoter. Neuronal death, glial activation, lymphocyte recruitment, and integrin expression were evaluated by immunohistochemistry and flow cytometry from 3 to 28 days postinjury. Our findings revealed an increase in motor neuron cell death in GFAP‐IL6Tg mice correlating with changes in the microglial activation pattern, characterized principally by less attachment to neurons and reduced expression of both CD11b and CD18. We also found a higher CD4+ T‐lymphocyte recruitment in GFAP‐IL6Tg mice. In addition, changes in the expression pattern of different integrins and their receptors were observed in transgenic animals. Specifically, alterations in osteopontin expression in motor neurons and its receptors CD44 and CD49e in lymphocytes and microglia, respectively, which may account for the variations related to glial reactivity and lymphocyte infiltration. In conclusion, our results indicated that forced local production of IL‐6 has a direct impact on the outcome of nerve injury in the CNS inducing an increase in neurodegeneration, changes in glial response, and lymphocyte recruitment as well as in the expression of different integrins and their receptors. GLIA 2014;62:1142–1161
Glia | 2015
Nàdia Villacampa; Beatriz Almolda; Antonietta Vilella; Iain L. Campbell; Berta González; Bernardo Castellano
Interleukin‐10 (IL‐10) is a cytokine that plays a crucial role in regulating the inflammatory response and immune reactions. In the central nervous system (CNS), IL‐10 is mainly produced by astrocytes and microglia and it is upregulated after various insults, such as experimental autoimmune encephalomyelitis, middle cerebral artery occlusion, excitotoxicity and traumatic brain injury. To better understand the effects of IL‐10 in the normal and injured CNS, we generated transgenic mice (termed GFAP‐IL‐10Tg) that expressed the murine IL‐10 gene under the transcriptional control of the glial fibrillary acidic protein (GFAP) promoter. Previous studies demonstrated marked changes in the microglial phenotype in these mice under basal conditions. The objective of the present study was to investigate the effects of local astrocyte‐targeted IL‐10 production on glial activation, neuronal degeneration and leukocyte recruitment after axotomy. GFAP‐IL‐10Tg mice had marked changes in the phenotype of activated microglial cells, as well as in the number of microglial clusters and in microglial cell density. These microglial changes are accompanied by a twofold increase in lymphocyte infiltration in GFAP‐IL‐10Tg mice and around twofold decrease in neuronal cell death at 21 dpi. Altogether, our findings suggested that astrocyte‐targeted production of IL‐10 impacted the microglial response and lymphocyte recruitment and culminated in a beneficial effect on neuronal survival. GLIA 2015;63:1166–1184
Methods of Molecular Biology | 2013
Nàdia Villacampa; Beatriz Almolda; Berta González; Bernardo Castellano
The use of different lectins for the study of microglial cells in the central nervous system (CNS) is a valuable tool that has been extensively used in the last years for the selective staining of this glial cell population, not only in normal physiological conditions, but also in a wide range of pathological situations where the normal homeostasis of the parenchyma is disturbed. In this chapter we accurately describe the methodology for the selective labelling of microglial cells by using the tomato lectin (TL), a protein lectin obtained from Lycopersicum esculentum with specific affinity for poly-N-acetyl lactosamine sugar residues which are found on the plasma membrane and in the cytoplasm of microglia. Here we describe how to perform this technique on vibratome, frozen, and paraffin sections for optical microscopy, as well as for transmission electron microscopy (TEM) studies. Using this methodology it is possible to visualize amoeboid microglia in the developing brain, ramified microglia in the adult, and activated/reactive microglia in the experimentally damaged brain. In addition, as TL also recognized sugar residues in endothelial cells, this technique is very useful for the study of the relationship established between microglia and the CNS vasculature.
Frontiers in Cellular Neuroscience | 2015
Beatriz Almolda; Berta González; Bernardo Castellano
The infiltration of immune cells in the central nervous system is a common hallmark in different neuroinflammatory conditions. Accumulating evidence indicates that resident glial cells can establish a cross-talk with infiltrated immune cells, including T-cells, regulating their recruitment, activation and function within the CNS. Although the healthy CNS has been thought to be devoid of professional dendritic cells (DCs), numerous studies have reported the presence of a population of DCs in specific locations such as the meninges, choroid plexuses and the perivascular space. Moreover, the infiltration of DC precursors during neuroinflammatory situations has been proposed, suggesting a putative role of these cells in the regulation of lymphocyte activity within the CNS. On the other hand, under specific circumstances, microglial cells are able to acquire a phenotype of DC expressing a wide range of molecules that equip these cells with all the necessary machinery for communication with T-cells. In this review, we summarize the current knowledge on the expression of molecules involved in the cross-talk with T-cells in both microglial cells and DCs and discuss the potential contribution of each of these cell populations on the control of lymphocyte function within the CNS.
Advances in Experimental Medicine and Biology | 2016
Bernardo Castellano; Mar Bosch-Queralt; Beatriz Almolda; Nàdia Villacampa; Berta González
Microglial cells are highly dynamic cells with processes continuously moving to survey the surrounding territory. Microglia possess a broad variety of surface receptors and subtle changes in their microenvironment cause microglial cell processes to extend, retract, and interact with neuronal synaptic contacts. When the nervous system is disturbed, microglia activate, proliferate, and migrate to sites of injury in response to alert signals. Released nucleotides like ATP and UTP are among the wide range of molecules promoting microglial activation and guiding their migration and phagocytic function. The increased concentration of nucleotides in the extracellular space could be involved in the microglial wrapping found around injured neurons in various pathological conditions, especially after peripheral axotomy. Microglial wrappings isolate injured neurons from synaptic inputs and facilitate the molecular dialog between endangered or injured neurons and activated microglia. Astrocytes may also participate in neuronal ensheathment. Degradation of ATP by microglial ecto-nucleotidases and the expression of various purine receptors might be decisive in regulating the function of enwrapping glial cells and in determining the fate of damaged neurons, which may die or may regenerate their axons and survive.