Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beatriz Aranda-Orgilles is active.

Publication


Featured researches published by Beatriz Aranda-Orgilles.


Cell Stem Cell | 2012

Regulation of Pluripotency and Cellular Reprogramming by the Ubiquitin-Proteasome System

Shannon Buckley; Beatriz Aranda-Orgilles; Alexandros Strikoudis; Effie Apostolou; Evangelia Loizou; Kelly Moran-Crusio; Charles Farnsworth; Antonius Koller; Ramanuj DasGupta; Matthias Stadtfeld; Emily I. Chen; Iannis Aifantis

Although transcriptional regulation of stem cell pluripotency and differentiation has been extensively studied, only a small number of studies have addressed the roles for posttranslational modifications in these processes. A key mechanism of posttranslational modification is ubiquitination by the ubiquitin-proteasome system (UPS). Here, using shotgun proteomics, we map the ubiquitinated protein landscape during embryonic stem cell (ESC) differentiation and induced pluripotency. Moreover, using UPS-targeted RNAi screens, we identify additional regulators of pluripotency and differentiation. We focus on two of these proteins, the deubiquitinating enzyme Psmd14 and the E3 ligase Fbxw7, and characterize their importance in ESC pluripotency and cellular reprogramming. This global characterization of the UPS as a key regulator of stem cell pluripotency opens the way for future studies that focus on specific UPS enzymes or ubiquitinated substrates.


Nature Immunology | 2015

TET1 is a tumor suppressor of hematopoietic malignancy

Luisa Cimmino; Meelad M. Dawlaty; Delphine Ndiaye-Lobry; Yoon Sing Yap; Sofia Bakogianni; Yiting Yu; Sanchari Bhattacharyya; Rita Shaknovich; Huimin Geng; Camille Lobry; Jasper Mullenders; Bryan King; Thomas Trimarchi; Beatriz Aranda-Orgilles; Cynthia Liu; Steven Shen; Amit Verma; Rudolf Jaenisch; Iannis Aifantis

The methylcytosine dioxygenase TET1 (‘ten-eleven translocation 1’) is an important regulator of 5-hydroxymethylcytosine (5hmC) in embryonic stem cells. The diminished expression of TET proteins and loss of 5hmC in many tumors suggests a critical role for the maintenance of this epigenetic modification. Here we found that deletion of Tet1 promoted the development of B cell lymphoma in mice. TET1 was required for maintenance of the normal abundance and distribution of 5hmC, which prevented hypermethylation of DNA, and for regulation of the B cell lineage and of genes encoding molecules involved in chromosome maintenance and DNA repair. Whole-exome sequencing of TET1-deficient tumors revealed mutations frequently found in non-Hodgkin B cell lymphoma (B-NHL), in which TET1 was hypermethylated and transcriptionally silenced. Our findings provide in vivo evidence of a function for TET1 as a tumor suppressor of hematopoietic malignancy.


Nature Immunology | 2010

Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase-substrate complex.

Linsey Reavie; Giusy Della Gatta; Kelly M. Crusio; Beatriz Aranda-Orgilles; Shannon Buckley; Benjamin J. Thompson; Eugine Lee; Jie Gao; Andrea L. Bredemeyer; Beth A. Helmink; Jiri Zavadil; Barry P. Sleckman; Teresa Palomero; Adolfo A. Ferrando; Iannis Aifantis

Hematopoietic stem cell (HSC) differentiation is regulated by cell-intrinsic and cell-extrinsic cues. In addition to transcriptional regulation, post-translational regulation may also control HSC differentiation. To test this hypothesis, we visualized the ubiquitin-regulated protein stability of a single transcription factor, c-Myc. The stability of c-Myc protein was indicative of HSC quiescence, and c-Myc protein abundance was controlled by the ubiquitin ligase Fbw7. Fine changes in the stability of c-Myc protein regulated the HSC gene-expression signature. Using whole-genome genomic approaches, we identified specific regulators of HSC function directly controlled by c-Myc binding; however, adult HSCs and embryonic stem cells sensed and interpreted c-Myc-regulated gene expression in distinct ways. Our studies show that a ubiquitin ligase–substrate pair can orchestrate the molecular program of HSC differentiation.


Cancer Cell | 2013

Regulation of c-Myc Ubiquitination Controls Chronic Myelogenous Leukemia Initiation and Progression

Linsey Reavie; Shannon Buckley; Evangelia Loizou; Shoichiro Takeishi; Beatriz Aranda-Orgilles; Delphine Ndiaye-Lobry; Omar Abdel-Wahab; Sherif Ibrahim; Keiichi I. Nakayama; Iannis Aifantis

The molecular mechanisms regulating leukemia-initiating cell (LIC) function are of important clinical significance. We use chronic myelogenous leukemia (CML) as a model of LIC-dependent malignancy and identify the interaction between the ubiquitin ligase Fbw7 and its substrate c-Myc as a regulator of LIC homeostasis. Deletion of Fbw7 leads to c-Myc overexpression, p53-dependent LIC-specific apoptosis, and the eventual inhibition of tumor progression. A decrease of either c-Myc protein levels or attenuation of the p53 response rescues LIC activity and disease progression. Further experiments showed that Fbw7 expression is required for survival and maintenance of human CML LIC. These studies identify a ubiquitin ligase:substrate pair regulating LIC activity, suggesting that targeting of the Fbw7:c-Myc axis is an attractive therapy target in refractory CML.


Human Genetics | 2008

The Opitz syndrome gene product MID1 assembles a microtubule-associated ribonucleoprotein complex

Beatriz Aranda-Orgilles; Alexander Trockenbacher; Jennifer Winter; Johanna Aigner; Andrea Köhler; Ewa Jastrzebska; Joachim Stahl; Eva-Christina Müller; Albrecht Otto; Erich E. Wanker; Rainer Schneider; Susann Schweiger

Opitz BBB/G syndrome (OS) is a heterogenous malformation syndrome mainly characterised by hypertelorism and hypospadias. In addition, patients may present with several other defects of the ventral midline such as cleft lip and palate and congenital heart defects. The syndrome-causing gene encodes the X-linked E3 ubiquitin ligase MID1 that mediates ubiquitin-specific modification and degradation of the catalytic subunit of the translation regulator protein phosphatase 2A (PP2A). Here, we show that the MID1 protein also associates with elongation factor 1α (EF-1α) and several other proteins involved in mRNA transport and translation, including RACK1, Annexin A2, Nucleophosmin and proteins of the small ribosomal subunits. Mutant MID1 proteins as found in OS patients lose the ability to interact with EF-1α. The composition of the MID1 protein complex was determined by several independent methods: (1) yeast two-hybrid screening and (2) immunofluorescence, (3) a biochemical approach involving affinity purification of the complex, (4) co-fractionation in a microtubule assembly assay and (5) immunoprecipitation. Moreover, we show that the cytoskeleton-bound MID1/translation factor complex specifically associates with G- and U-rich RNAs and incorporates MID1 mRNA, thus forming a microtubule-associated ribonucleoprotein (RNP) complex. Our data suggest a novel function of the OS gene product in directing translational control to the cytoskeleton. The dysfunction of this mechanism would lead to malfunction of microtubule-associated protein translation and to the development of OS.


PLOS ONE | 2008

Active transport of the ubiquitin ligase MID1 along the microtubules is regulated by protein phosphatase 2A.

Beatriz Aranda-Orgilles; Johanna Aigner; Melanie Kunath; Rudi Lurz; Rainer Schneider; Susann Schweiger

Mutations in the MID1 protein have been found in patients with Opitz BBB/G syndrome (OS), which is characterised by multiple malformations of the ventral midline. MID1 is a microtubule-associated protein that stabilizes microtubules and, in association with the regulatory subunit of protein phosphatase 2A (PP2A), α4, provides ubiquitin ligase activity for the ubiquitin-specific modification of PP2A. Using Fluorescence Recovery After Photobleaching (FRAP) technology, we show here that MID1 is actively and bi-directionally transported along the microtubules, and that this movement is directly linked to its MAP kinase and PP2A-mediated phosphorylation status. Intact transport depends on both kinesins and dyneins and is inhibited upon colcemide treatments. MID1 proteins carrying missense mutations in the α4 binding domain still bind the microtubules but cannot be actively transported. Likewise, knock-down of the α4 protein, inhibition of PP2A activity by okadaic acid and fostriecin or the simulation of permanent phosphorylation at Ser96 in MID1 stop the migration of MID1-GFP, while preserving its microtubule-association. In summary, our data uncover an unexpected and novel function for PP2A, its regulatory subunit α4 and PP2A/α4/mTOR signaling in the active transport of the MID1 ubiquitin ligase complex along the cytoskeleton. Furthermore, a failure in the microtubule directed transport of this protein complex would be an attractive mechanism underlying the pathogenesis of OS in patients with B-box1 mutations.


Journal of Biological Chemistry | 2011

Protein Phosphatase 2A (PP2A)-specific Ubiquitin Ligase MID1 Is a Sequence-dependent Regulator of Translation Efficiency Controlling 3-Phosphoinositide-dependent Protein Kinase-1 (PDPK-1)

Beatriz Aranda-Orgilles; Désirée Rutschow; Raphael Zeller; Antonios I. Karagiannidis; Andrea Köhler; Changwei Chen; Timothy J. Wilson; Sven Krause; Stefan Roepcke; David M. J. Lilley; Rainer Schneider; Susann Schweiger

Background: MID1, a regulator of PP2A, forms part of a messenger ribonucleoprotein complex. Results: MID1 complex binds a purine-rich sequence motif in mRNAs and regulates their translation. Conclusion: The translation of mRNAs bound by the MID1 complex is impaired in patients with Opitz syndrome. Significance: This study shows how coordinated translation of specific mRNAs can be regulated and provides new strategies for therapies and biotechnology. We have shown previously that the ubiquitin ligase MID1, mutations of which cause the midline malformation Opitz BBB/G syndrome (OS), serves as scaffold for a microtubule-associated protein complex that regulates protein phosphatase 2A (PP2A) activity in a ubiquitin-dependent manner. Here, we show that the MID1 protein complex associates with mRNAs via a purine-rich sequence motif called MIDAS (MID1 association sequence) and thereby increases stability and translational efficiency of these mRNAs. Strikingly, inclusion of multiple copies of the MIDAS motif into mammalian mRNAs increases production of the encoded proteins up to 20-fold. Mutated MID1, as found in OS patients, loses its influence on MIDAS-containing mRNAs, suggesting that the malformations in OS patients could be caused by failures in the regulation of cytoskeleton-bound protein translation. This is supported by the observation that the majority of mRNAs that carry MIDAS motifs is involved in developmental processes and/or energy homeostasis. Further analysis of one of the proteins encoded by a MIDAS-containing mRNA, namely PDPK-1 (3-phosphoinositide dependent protein kinase-1), which is an important regulator of mammalian target of rapamycin/PP2A signaling, showed that PDPK-1 protein synthesis is significantly reduced in cells from an OS patient compared with an age-matched control and can be rescued by functional MID1. Together, our data uncover a novel messenger ribonucleoprotein complex that regulates microtubule-associated protein translation. They suggest a novel mechanism underlying OS and point at an enormous potential of the MIDAS motif to increase the efficiency of biotechnological protein production in mammalian cells.


Nature Immunology | 2016

The ubiquitin ligase Huwe1 regulates the maintenance and lymphoid commitment of hematopoietic stem cells

Bryan King; Francesco Boccalatte; Kelly Moran-Crusio; Elmar Wolf; Jingjing Wang; Clarisse Kayembe; Charalampos Lazaris; Xiaofeng Yu; Beatriz Aranda-Orgilles; Anna Lasorella; Iannis Aifantis

Hematopoietic stem cells (HSCs) are dormant in the bone marrow and can be activated in response to diverse stresses to replenish all blood cell types. Here we identify the ubiquitin ligase Huwe1 as a crucial regulator of HSC functions via its post-translational control of N-myc. We found Huwe1 to be essential for HSC self-renewal, quiescence and lymphoid fate specification. Using a novel fluorescent fusion allele (MycnM), we observed that N-myc expression was restricted to the most immature, multipotent stem and progenitor populations. N-myc was upregulated in response to stress or upon loss of Huwe1, leading to increased proliferation and stem cell exhaustion. Mycn depletion reversed most of these phenotypes in vivo, suggesting that the attenuation of N-myc by Huwe1 is essential to reestablish homeostasis following stress.Hematopoietic stem cells (HSCs) are dormant in the bone marrow and can be activated in response to diverse stresses to replenish all blood cell types. We identified the ubiquitin ligase Huwe1 as a crucial regulator of HSC function via its post-translational control of the oncoprotein N-myc (encoded by Mycn). We found Huwe1 to be essential for HSC self-renewal, quiescence and lymphoid-fate specification in mice. Through the use of a fluorescent fusion allele (MycnM), we observed that N-myc expression was restricted to the most immature, multipotent stem and progenitor populations. N-myc expression was upregulated in response to stress or following loss of Huwe1, which led to increased proliferation and stem-cell exhaustion. Mycn depletion reversed most of these phenotypes in vivo, which suggested that the attenuation of N-myc by Huwe1 is essential for reestablishing homeostasis following stress.


Molecular Cancer | 2014

A hormone-dependent feedback-loop controls androgen receptor levels by limiting MID1, a novel translation enhancer and promoter of oncogenic signaling

Andrea Köhler; Ummuhan Demir; Eva Kickstein; Sybille Krauss; Johanna Aigner; Beatriz Aranda-Orgilles; Antonios I. Karagiannidis; Clemens Achmüller; Huajie Bu; Andrea Wunderlich; Michal-Ruth Schweiger; Georg Schaefer; Susann Schweiger; Helmut Klocker; Rainer Schneider

BackgroundHigh androgen receptor (AR) level in primary tumour predicts increased prostate cancer (PCa)-specific mortality. Furthermore, activations of the AR, PI3K, mTOR, NFκB and Hedgehog (Hh) signaling pathways are involved in the fatal development of castration-resistant prostate cancer during androgen ablation therapy. MID1, a negative regulator of the tumor-suppressor PP2A, is known to promote PI3K, mTOR, NFκB and Hh signaling. Here we investigate the interaction of MID1 and AR.MethodsAR and MID1 mRNA and protein levels were measured by qPCR, Western blot and immunohistochemistry. Co-immunoprecipitation followed by PCR and RNA-pull-down followed by Western blot was used to investigate protein-mRNA interaction, chromatin-immunoprecipitation followed by next-generation sequencing for identification of AR chromatin binding sites. AR transcriptional activity and activity of promoter binding sites for AR were analyzed by reporter gene assays. For knockdown or overexpression of proteins of interest prostate cancer cells were transfected with siRNA or expression plasmids, respectively.ResultsThe microtubule-associated MID1 protein complex associates with AR mRNA via purine-rich trinucleotide repeats, expansions of which are known to correlate with ataxia and cancer. The level of MID1 directly correlates with the AR protein level in PCa cells. Overexpression of MID1 results in a several fold increase in AR protein and activity without major changes in mRNA-levels, whereas siRNA-triggered knockdown of MID1 mRNA reduces AR-protein levels significantly. Upregulation of AR protein by MID1 occurs via increased translation as no major changes in AR protein stability could be observed. AR on the other hand, regulates MID1 via several functional AR binding sites in the MID1 gene, and, in the presence of androgens, exerts a negative feedback loop on MID1 transcription. Thus, androgen withdrawal increases MID1 and concomitantly AR-protein levels. In line with this, MID1 is significantly over-expressed in PCa in a stage-dependent manner.ConclusionPromotion of AR, in addition to enhancement of the Akt-, NFκB-, and Hh-pathways by sustained MID1-upregulation during androgen deprivation therapy provides a powerful proliferative scenario for PCa progression into castration resistance. Thus MID1 represents a novel, multi-faceted player in PCa and a promising target to treat castration resistant prostate cancer.


Nature Immunology | 2015

Erratum: TET1 is a tumor suppressor of hematopoietic malignancy

Luisa Cimmino; Meelad M. Dawlaty; Delphine Ndiaye-Lobry; Yoon Sing Yap; Sofia Bakogianni; Yiting Yu; Sanchari Bhattacharyya; Rita Shaknovich; Huimin Geng; Camille Lobry; Jasper Mullenders; Bryan King; Thomas Trimarchi; Beatriz Aranda-Orgilles; Cynthia Liu; Steven Shen; Amit Verma; Rudolf Jaenisch; Iannis Aifantis

Nat. Immunol. 16, 653–662 (2015); published online 13 April 2015; corrected after print 17 June 2015 In the version of this article initially published, labels reading “5hmC gain” were incorrectly included below the plots in Figure 6e, and the plot at right was mislabeled above (as “loss”). The plotat left should have a single label above reading “5hmC loss” and the plot at right should have a single label above reading “5hmC gain.

Collaboration


Dive into the Beatriz Aranda-Orgilles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clarisse Kayembe

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge