Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beatriz Elizaga Navascués is active.

Publication


Featured researches published by Beatriz Elizaga Navascués.


International Journal of Modern Physics D | 2016

Hybrid Models in Loop Quantum Cosmology

Beatriz Elizaga Navascués; Mercedes Martín-Benito; Guillermo A. Mena Marugán

In the framework of Loop Quantum Cosmology (LQC), inhomogeneous models are usually quantized by means of a hybrid approach that combines loop quantization techniques with standard quantum field theory methods. This approach is based on a splitting of the phase space in a homogeneous sector, formed by global, zero-modes and an inhomogeneous sector, formed by the remaining, infinite number of modes, that describe the local degrees of freedom. Then, the hybrid quantization is attained by adopting a loop representation for the homogeneous gravitational sector, while a Fock representation is used for the inhomogeneities. The zero-mode of the Hamiltonian constraint operator couples the homogeneous and inhomogeneous sectors. The hybrid approach, therefore, is expected to provide a suitable quantum theory in regimes where the main quantum effects of the geometry are those affecting the zero-modes, while the inhomogeneities, still being quantum, can be treated in a more conventional way. This hybrid strategy was first proposed for the simplest cosmological midisuperspaces: the Gowdy models, and it has been later applied to the case of cosmological perturbations. This paper reviews the construction and main applications of hybrid LQC.


Physical Review D | 2017

Fermions in hybrid loop quantum cosmology

Beatriz Elizaga Navascués; Guillermo A. Mena Marugán; Mercedes Martín-Benito

This work pioneers the quantization of primordial fermion perturbations in hybrid Loop Quantum Cosmology (LQC). We consider a Dirac field coupled to a spatially flat, homogeneous, and isotropic cosmology, sourced by a scalar inflaton, and treat the Dirac field as a perturbation. We describe the inhomogeneities of this field in terms of creation and annihilation variables, chosen to admit a unitary evolution if the Dirac fermion were treated as a test field. Considering instead the full system, we truncate its action at quadratic perturbative order and construct a canonical formulation. In particular this implies that, in the global Hamiltonian constraint of the model, the contribution of the homogeneous sector is corrected with a quadratic perturbative term. We then adopt the hybrid LQC approach to quantize the full model, combining the loop representation of the homogeneous geometry with the Fock quantization of the inhomogeneities. We assume a Born-Oppenheimer ansatz for physical states and show how to obtain a Schrodinger equation for the quantum evolution of the perturbations, where the role of time is played by the homogeneous inflaton. We prove that the resulting quantum evolution of the Dirac field is indeed unitary, despite the fact that the underlying homogeneous geometry has been quantized as well. Remarkably, in such evolution, the fermion field couples to an infinite sequence of quantum moments of the homogeneous geometry. Moreover, the evolved Fock vacuum of our fermion perturbations is shown to be an exact solution of the Schrodinger equation. Finally, we discuss in detail the quantum backreaction that the fermion field introduces in the global Hamiltonian constraint. For completeness, our quantum study includes since the beginning (gauge-invariant) scalar and tensor perturbations, that were studied in previous works.


Annals of Physics | 2017

Dirac fields in flat FLRW cosmology: Uniqueness of the Fock quantization

Jeronimo Cortez; Beatriz Elizaga Navascués; Mercedes Martín-Benito; Guillermo A. Mena Marugán; José M. Velhinho

Abstract We address the issue of the infinite ambiguity that affects the construction of a Fock quantization of a Dirac field propagating in a cosmological spacetime with flat compact sections. In particular, we discuss a physical criterion that restricts to a unique possibility (up to unitary equivalence) the infinite set of available vacua. We prove that this desired uniqueness is guaranteed, for any possible choice of spin structure on the spatial sections, if we impose two conditions. The first one is that the symmetries of the classical system must be implemented quantum mechanically, so that the vacuum is invariant under the symmetry transformations. The second and more important condition is that the constructed theory must have a quantum dynamics that is implementable as a (non-trivial) unitary operator in Fock space. Actually, this unitarity of the quantum dynamics leads us to identify as explicitly time dependent some very specific contributions of the Dirac field. In doing that, we essentially characterize the part of the dynamics governed by the Dirac equation that is unitarily implementable. The uniqueness of the Fock vacuum is attained then once a physically motivated convention for the concepts of particles and antiparticles is fixed.


Physical Review D | 2016

Unique Fock quantization of a massive fermion field in a cosmological scenario

Jeronimo Cortez; Beatriz Elizaga Navascués; Mercedes Martín-Benito; Guillermo A. Mena Marugán; José M. Velhinho

It is well known that the Fock quantization of field theories in general spacetimes suffers from an infinite ambiguity, owing to the inequivalent possibilities in the selection of a representation of the canonical commutation or anticommutation relations, but also owing to the freedom in the choice of variables to describe the field among all those related by linear time-dependent transformations, including the dependence through functions of the background. In this work we remove this ambiguity (up to unitary equivalence) in the case of a massive Dirac free field propagating in a spacetime with homogeneous and isotropic spatial sections of spherical topology. Two physically reasonable conditions are imposed in order to arrive to this result: (a) The invariance of the vacuum under the spatial isometries of the background, and (b) the unitary implementability of the dynamical evolution that dictates the Dirac equation. We characterize the Fock quantizations with a non trivial fermion dynamics that satisfy these two conditions. Then, we provide a complete proof of the unitary equivalence of the representations in this class under very mild requirements on the time variation of the background, once a criterion to discern between particles and antiparticles has been set.


Physical Review D | 2017

Uniqueness of the Fock quantization of Dirac fields in 2+1 dimensions

Jeronimo Cortez; Beatriz Elizaga Navascués; Mercedes Martín-Benito; Guillermo A. Mena Marugán; José M. Velhinho

We study the Fock quantization of a free Dirac field in 2+1-dimensional backgrounds which are conformally ultrastatic, with a time-dependent conformal factor. As it is typical for field theories, there is an infinite ambiguity in the Fock representation of the canonical anticommutation relations. Different choices may lead to unitarily inequivalent theories that describe different physics. To remove this ambiguity one usually requires that the vacuum be invariant under the unitary transformations that implement the symmetries of the equations of motion. However, in non-stationary backgrounds, where time translation is not a symmetry transformation, the requirement of vacuum invariance is in general not enough to fix completely the Fock representation. We show that this problem is overcome in the considered scenario by demanding, in addition, a unitarily implementable quantum dynamics. The combined imposition of these conditions selects a unique family of equivalent Fock representations. Moreover, one also obtains an essentially unique splitting of the time variation of the Dirac field into an explicit dependence on the background scale factor and a quantum evolution of the corresponding creation and annihilation operators.


Physical Review D | 2016

Uniqueness of the Fock quantization of scalar fields in a Bianchi I cosmology with unitary dynamics

Jeronimo Cortez; Beatriz Elizaga Navascués; Mercedes Martín-Benito; Guillermo A. Mena Marugán; I. Olmedo; José M. Velhinho

The Fock quantization of free scalar fields is subject to an infinite ambiguity when it comes to choosing a set of annihilation and creation operators, choice that is equivalent to the determination of a vacuum state. In highly symmetric situations, this ambiguity can be removed by asking vacuum invariance under the symmetries of the system. Similarly, in stationary backgrounds, one can demand time-translation invariance plus positivity of the energy. However, in more general situations, additional criteria are needed. For the case of free (test) fields minimally coupled to a homogeneous and isotropic cosmology, it has been proven that the ambiguity is resolved by introducing the criterion of unitary implementability of the quantum dynamics, as an endomorphism in Fock space. This condition determines a specific separation of the time dependence of the field, so that this splits into a very precise background dependence and a genuine quantum evolution. Furthermore, together with the condition of vacuum invariance under the spatial Killing symmetries, unitarity of the dynamics selects a unique Fock representation for the canonical commutation relations, up to unitary equivalence. In this work, we generalize these results to anisotropic spacetimes with shear, which are therefore not conformally symmetric, by considering the case of a free scalar field in a Bianchi I cosmology.


Physical Review D | 2015

Unitary evolution and uniqueness of the Fock representation of Dirac fields in cosmological spacetimes

Jeronimo Cortez; Beatriz Elizaga Navascués; Mercedes Martín-Benito; Guillermo A. Mena Marugán; José M. Velhinho

We present a privileged Fock quantization of a massive Dirac field in a closed Friedmann-Robertson-Walker cosmology, partially selected by the criteria of invariance of the vacuum under the symmetries of the field equations, and unitary implementation of the dynamics. When quantizing free scalar fields in homogeneous and isotropic spacetimes with compact spatial sections, these criteria have been shown to pick out a unique Fock representation (up to unitary equivalence). Here, we employ the same criteria for fermion fields and explore whether that uniqueness result can be extended to the case of the Fock quantization of fermions. For the massive Dirac field, we start by introducing a specific choice of the complex structure that determines the Fock representation. Such structure is invariant under the symmetries of the equations of motion. We then prove that the corresponding representation of the canonical anticommutation relations admits a unitary implementation of the dynamics. Moreover, we construct a rather general class of representations that satisfy the above criteria, and we demonstrate that they are all unitarily equivalent to our previous choice. The complex structures in this class are restricted only by certain conditions on their asymptotic behavior for modes in the ultraviolet sector of the Dirac operator. We finally show that, if one assumes that these asymptotic conditions are in fact trivial once our criteria are fulfilled, then the time-dependent scaling in the definition of the fermionic annihilation and creation-like variables is essentially unique.


Universe | 2018

The Vacuum State of Primordial Fluctuations in Hybrid Loop Quantum Cosmology

Beatriz Elizaga Navascués; Daniel Martín de Blas; Guillermo A. Mena Marugán

We investigate the role played by the vacuum of the primordial fluctuations in hybrid Loop Quantum Cosmology. We consider scenarios where the inflaton potential is a mass term and the unperturbed quantum geometry is governed by the effective dynamics of Loop Quantum Cosmology. In this situation, the phenomenologically interesting solutions have a preinflationary regime where the kinetic energy of the inflaton dominates over the potential. For these kind of solutions, we show that the primordial power spectra depend strongly on the choice of vacuum. We study in detail the case of adiabatic states of low order and the non-oscillating vacuum introduced by Martin de Blas and Olmedo, all imposed at the bounce. The adiabatic spectra are typically suppressed at large scales, and display rapid oscillations with an increase of power at intermediate scales. In the non-oscillating vacuum, there is power suppression for large scales, but the rapid oscillations are absent. We argue that the oscillations are due to the imposition of initial adiabatic conditions in the region of kinetic dominance, and that they would also be present in General Relativity. Finally, we discuss the sensitivity of our results to changes of the initial time and other data of the model.


Physical Review D | 2018

Time-dependent mass of cosmological perturbations in the hybrid and dressed metric approaches to loop quantum cosmology

Beatriz Elizaga Navascués; Daniel Martín de Blas; Guillermo A. Mena Marugán


Physical Review D | 2018

Backreaction of fermionic perturbations in the Hamiltonian of hybrid loop quantum cosmology

Beatriz Elizaga Navascués; Guillermo A. Mena Marugán; Santiago Prado Loy

Collaboration


Dive into the Beatriz Elizaga Navascués's collaboration.

Top Co-Authors

Avatar

Guillermo A. Mena Marugán

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José M. Velhinho

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar

Jeronimo Cortez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Cortez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Daniel Martín de Blas

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge