Beatriz Gal
European University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beatriz Gal.
Neuron | 2007
Guglielmo Foffani; Yoryani G. Uzcategui; Beatriz Gal; Liset Menendez de la Prida
Ripples are sharp-wave-associated field oscillations (100-300 Hz) recorded in the hippocampus during behavioral immobility and slow-wave sleep. In epileptic rats and humans, a different and faster oscillation (200-600 Hz), termed fast ripples, has been described. However, the basic mechanisms are unknown. Here, we propose that fast ripples emerge from a disorganized ripple pattern caused by unreliable firing in the epileptic hippocampus. Enhanced synaptic activity is responsible for the irregular bursting of CA3 pyramidal cells due to large membrane potential fluctuations. Lower field interactions and a reduced spike-timing reliability concur with decreased spatial synchronization and the emergence of fast ripples. Reducing synaptically driven membrane potential fluctuations improves both spike-timing reliability and spatial synchronization and restores ripples in the epileptic hippocampus. Conversely, a lower spike-timing reliability, with reduced potassium currents, is associated with ripple shuffling in normal hippocampus. Therefore, fast ripples may reflect a pathological desynchronization of the normal ripple pattern.
The Journal of Neuroscience | 2004
L. Menendez de la Prida; Beatriz Gal
The subiculum, which has a strategic position in controlling hippocampal activity, is receiving significant attention in epilepsy research. However, the functional organization of subicular circuits remains unknown. Here, we combined different recording and analytical methods to study focal and widespread population activity in the isolated subiculum in zero Mg2+ media. Patch and field recordings were combined to examine the contribution of different cell types to population activity. The properties of cells leading field activity were examined. Predictive factors for a cell to behave as leader included exhibiting the bursting phenotype, displaying a low firing threshold, and having more distal apical dendrites. A subset of bursting cells constituted the first glutamatergic type that led a recruitment process that subsequently activated additional excitatory as well as inhibitory cells. This defined a sequence of synaptic excitation and inhibition that was studied by measuring the associated conductance changes and the evolution of the composite reversal potential. It is shown that inhibition was time-locked to excitation, which shunted excitatory inputs and suppressed firing during focal activity. This was recorded extracellularly as a multi-unit ensemble of active cells, the spatial boundaries of which were controlled by inhibition in contrast to widespread epileptiform activity. Focal activity was not dependent on the preparation or the developmental state because it was also recorded under 5 mm [K+]o and in adult tissue. Our data indicate that the subicular networks can be spontaneously organized as leader-follower local circuits in which excitation is mainly driven by a subset of bursting cells and inhibition controls spatiotemporal firing.
PLOS ONE | 2012
Luz M. Suárez; Elena Cid; Beatriz Gal; Marion Inostroza; Jorge R. Brotons-Mas; Daniel Gomez-Dominguez; Liset Menendez de la Prida; José M. Solís
Seizures have profound impact on synaptic function and plasticity. While kainic acid is a popular method to induce seizures and to potentially affect synaptic plasticity, it can also produce physiological-like oscillations and trigger some forms of long-term potentiation (LTP). Here, we examine whether induction of LTP is altered in hippocampal slices prepared from rats with different sensitivity to develop status epilepticus (SE) by systemic injection of kainic acid. Rats were treated with multiple low doses of kainic acid (5 mg/kg; i.p.) to develop SE in a majority of animals (72–85% rats). A group of rats were resistant to develop SE (15–28%) after several accumulated doses. Animals were subsequently tested using chronic recordings and object recognition tasks before brain slices were prepared for histological studies and to examine basic features of hippocampal synaptic function and plasticity, including input/output curves, paired-pulse facilitation and theta-burst induced LTP. Consistent with previous reports in kindling and pilocapine models, LTP was reduced in rats that developed SE after kainic acid injection. These animals exhibited signs of hippocampal sclerosis and developed spontaneous seizures. In contrast, resistant rats did not become epileptic and had no signs of cell loss and mossy fiber sprouting. In slices from resistant rats, theta-burst stimulation induced LTP of higher magnitude when compared with control and epileptic rats. Variations on LTP magnitude correlate with animals’ performance in a hippocampal-dependent spatial memory task. Our results suggest dissociable long-term effects of treatment with kainic acid on synaptic function and plasticity depending on its epileptogenic efficiency.
The Journal of Neuroscience | 2015
François Laurent; Jorge R. Brotons-Mas; Elena Cid; Diego Lopez-Pigozzi; Manuel Valero; Beatriz Gal; Liset Menendez de la Prida
Coherent neuronal activity in the hippocampal–entorhinal circuit is a critical mechanism for episodic memory function, which is typically impaired in temporal lobe epilepsy. To better understand how this mechanism is implemented and degraded in this condition, we used normal and epileptic rats to examine theta activity accompanying active exploration. Assisted by multisite recordings of local field potentials (LFPs) and layer-specific profiling of input pathways, we provide detailed quantification of the proximodistal coherence of theta activity in the dorsal hippocampus of these animals. Normal rats showed stronger coordination between the temporoammonic and perforant entorhinal inputs (measured from lamina-specific current source density signals) at proximal locations, i.e., closer to CA3; while epileptic rats exhibited stronger interactions at distal locations, i.e., closer to subiculum. This opposing trend in epileptic rats was associated with the reorganization of the temporoammonic and perforant pathways that accompany hippocampal sclerosis, the pathological hallmark of this disease. In addition to this connectivity constraint, we discovered that the appropriate timing between entorhinal inputs arriving over several theta cycles at the proximal and distal ends of the dorsal hippocampus was impaired in epileptic rats. Computational reconstruction of LFP signals predicted that restoring timing variability has a major impact on repairing theta coherence. This manipulation, when tested pharmacologically via systemic administration of group III mGluR antagonists, successfully re-established theta coordination of LFPs in epileptic rats. Thus, proximodistal organization of entorhinal inputs is instrumental in temporal lobe physiology and a candidate mechanism to study cognitive comorbidities of temporal lobe epilepsy.
eNeuro | 2016
Diego Lopez-Pigozzi; François Laurent; Jorge R. Brotons-Mas; Mario Valderrama; Manuel Valero; Iván Fernández-Lamo; Elena Cid; Daniel Gomez-Dominguez; Beatriz Gal; L. Menendez de la Prida
Visual Abstract Abstract Recent reports in human demonstrate a role of theta–gamma coupling in memory for spatial episodes and a lack of coupling in people experiencing temporal lobe epilepsy, but the mechanisms are unknown. Using multisite silicon probe recordings of epileptic rats engaged in episodic-like object recognition tasks, we sought to evaluate the role of theta–gamma coupling in the absence of epileptiform activities. Our data reveal a specific association between theta–gamma (30–60 Hz) coupling at the proximal stratum radiatum of CA1 and spatial memory deficits. We targeted the microcircuit mechanisms with a novel approach to identify putative interneuronal types in tetrode recordings (parvalbumin basket cells in particular) and validated classification criteria in the epileptic context with neurochemical identification of intracellularly recorded cells. In epileptic rats, putative parvalbumin basket cells fired poorly modulated at the falling theta phase, consistent with weaker inputs from Schaffer collaterals and attenuated gamma oscillations, as evaluated by theta-phase decomposition of current–source density signals. We propose that theta–gamma interneuronal rhythmopathies of the temporal lobe are intimately related to episodic memory dysfunction in this condition.
Frontiers in Systems Neuroscience | 2014
Elena Cid; Daniel Gomez-Dominguez; David Martin-Lopez; Beatriz Gal; François Laurent; José Manuel Ibarz; Fiona Francis; Liset Menendez de la Prida
Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e., the multiple-hit hypothesis). However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM) in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1); including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders.
BMC Research Notes | 2011
Beatriz Gal; Ignacio Busturia; Concepción Garrido
BackgroundThere is increasing use of non-traditional methods like problem-based learning, team-working and several other active-learning techniques in Physiology teaching. While several studies have investigated the impact of class attendance on the academic performance in traditional teaching, there is limited information regarding whether the new modalities are especially sensible to this factor.MethodsHere, we performed a comparative study between a control group receiving information through traditional methods and an experimental group submitted to new methodologies in Physiology teaching.ResultsWe found that while mean examination scores were similar in the control and the experimental groups, a different picture emerge when data are organized according to four categorical attendance levels. In the experimental group, scores were not different between the 1st and the 2nd exams (P = 0.429) nor between the 2nd and the 3rd exams (P = 0.225) for students that never or poorly attend classes, in contrast to the control group (P < 0.001). A score difference between attending students versus the absentees was maximal in the experimental versus the control group all along the different exams and in the final score.ConclusionWe suggest that class attendance is critical for learning using non-traditional methods.
PLOS ONE | 2018
Beatriz Gal; Margarita Rubio; Eva Iglesias; Purificación González
The European Higher Education Area (EHEA) is an opportunity to redesign medical education. Academic training is now focused on acquiring not only knowledge, but also those competencies critical to face complex professional scenarios. Together with re-evaluating traditional teaching methods, EHEA has forced a technological shift in the way we teach. By critically assessing the impact of novel teaching methodologies, we can better define biomedical education demands. Here, we address this question on a sample of medical students instructed in basic subjects along the first two academic courses. Two hundred and one medical students participated in the study (n = 128 first year, n = 73 second year). Quantitative (conventional survey statistics) and qualitative (open coding) approaches were combined to analyze data from surveys, confidential questionnaires, semi-structured interviews and open discussion. First year medical students rated more positively the use of participatory methodologies than second year students. A major drawback is detected in the perceived workload. Active teaching methodologies show a strong reliance on their time of implementation for medical students, a key aspect to be considered in the design of integrative participatory curricula along the first academic courses.
BMC Medical Education | 2017
Rocío González-Soltero; Ana Isabel Rodríguez Learte; Ana M. Sánchez; Beatriz Gal
BackgroundEstablishing innovative teaching programs in biomedical education involves dealing with several national and supra-national (i.e. European) regulations as well as with new pedagogical and demographic demands. We aimed to develop and validate a suitable instrument to integrate activities across preclinical years in all Health Science Degrees while meeting requirements of national quality agencies.MethodsThe new approach was conceived at two different levels: first, we identified potentially integrative units from different fields according to national learning goals established for each preclinical year (national quality agency regulations). Secondly, we implemented a new instrument that combines active methodologies in Work Station Learning Activities (WSLA), using clinical scenarios as a guiding common thread to instruct students from an integrated perspective. We evaluated students’ perception through a Likert-type survey of a total of 118 students enrolled in the first year of the Bachelor’s Degree in Medicine.ResultsOur model of integrated activities through WSLA is feasible, scalable and manageable with large groups of students and a minimum number of instructors, two major limitations in many medical schools. Students’ perception of WSLA was positive in overall terms. Seventy nine percent of participants stated that WSLA sessions were more useful than non-integrated activities. Eighty three percent confirmed that the WSLA methodology was effective at integrating concepts covered by different subjects.ConclusionsThe WSLA approach is a flexible and scalable instrument for moving towards integrated curricula, and it can be successfully adapted to teach basic subjects in preclinical years of Health Science degrees. WSLA can be applied to large groups of students in a variety of contexts or environments using clinical cases as connecting threads.
Lab on a Chip | 2013
Ane Altuna; Elisa Bellistri; Elena Cid; Paloma Aivar; Beatriz Gal; Javier Berganzo; Gemma Gabriel; Anton Guimerà; Rosa Villa; Luis J. Fernández; Liset Menendez de la Prida