Beatriz Simas Magalhães
Universidade Católica de Brasília
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beatriz Simas Magalhães.
The FASEB Journal | 2010
Anselmo J. Otero-González; Beatriz Simas Magalhães; Mónica García-Villarino; Carlos López-Abarrategui; Daniel Amaro Sousa; Simoni Campos Dias; Octavio L. Franco
Antimicrobial peptides are widely expressed in organisms and have been linked to innate and acquired immunities in vertebrates. These compounds are constitutively expressed and rapidly induced at different cellular levels to interact directly with infectious agents and/or modulate immunoreactions involved in defense against pathogenic microorganisms. In invertebrates, antimicrobial peptides represent the major humoral defense system against infection, showing a diverse spectrum of action mechanisms, most of them related to plasma membrane disturbance and lethal alteration of microbial integrity. Marine invertebrates are widespread, extremely diverse, and constantly under an enormous microbial challenge from the ocean environment, itself altered by anthropic influences derived from industrialization and transportation. Consequently, this study reexamines the peptides isolated over the past 2 decades from different origins, bringing phyla not previously reviewed up to date. Moreover, a promising novel use of antimicrobial peptides as effective drugs in human and veterinary medicine could be based on their unusual properties and synergic counterparts as immune response humoral effectors, in addition to their direct microbicidal activity. This has been seen in many other marine proteins that are sufficiently immunogenic to humans, not necessarily in terms of antibody generation but as inflammation promoters and recruitment agents or immune enhancers. —Otero‐González, A. J., Magalhães, B. S., Garcia‐Villarino, M., López‐Abarrategui, C., Sousa, D. A., Dias, S. C., Franco, O. L. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J. 24, 1320–1334 (2010). www.fasebj.org
Journal of Biological Chemistry | 2012
Michelle F. S. Pinto; Isabel C. M. Fensterseifer; Ludovico Migliolo; Daniel Amaro Sousa; Guy de Capdville; Jorge W. Arboleda-Valencia; Michelle L. Colgrave; David J. Craik; Beatriz Simas Magalhães; Simoni Campos Dias; Octavio L. Franco
Background: Cyclotides are a family of plant-derived defense peptides. Results: Parigidin-br1, a novel cyclotide, shows insecticidal activity in vivo and in vitro. Mechanistic insights into the activity were provided by theoretical and electron microscopic studies. Conclusion: The cyclotide disrupts insect cell membranes and has potential applications as a biotechnological insecticide. Significance: The study provides an enhanced understanding of cyclotide activity against a sugarcane insect pest. Cyclotides are a family of plant-derived cyclic peptides comprising six conserved cysteine residues connected by three intermolecular disulfide bonds that form a knotted structure known as a cyclic cystine knot (CCK). This structural motif is responsible for the pronounced stability of cyclotides against chemical, thermal, or proteolytic degradation and has sparked growing interest in this family of peptides. Here, we isolated and characterized a novel cyclotide from Palicourea rigida (Rubiaceae), which was named parigidin-br1. The sequence indicated that this peptide is a member of the bracelet subfamily of cyclotides. Parigidin-br1 showed potent insecticidal activity against neonate larvae of Lepidoptera (Diatraea saccharalis), causing 60% mortality at a concentration of 1 μm but had no detectable antibacterial effects. A decrease in the in vitro viability of the insect cell line from Spodoptera frugiperda (SF-9) was observed in the presence of parigidin-br1, consistent with in vivo insecticidal activity. Transmission electron microscopy and fluorescence microscopy of SF-9 cells after incubation with parigidin-br1 or parigidin-br1-fluorescein isothiocyanate, respectively, revealed extensive cell lysis and swelling of cells, consistent with an insecticidal mechanism involving membrane disruption. This hypothesis was supported by in silico analyses, which suggested that parigidin-br1 is able to complex with cell lipids. Overall, the results suggest promise for the development of parigidin-br1 as a novel biopesticide.
Antimicrobial Agents and Chemotherapy | 2012
Simone Maria-Neto; Elizabete de Souza Cândido; Diana Ribas Rodrigues; Daniel Amaro Sousa; Ezequiel Marcelino da Silva; Lidia Maria Pepe de Moraes; Anselmo J. Otero-González; Beatriz Simas Magalhães; Simoni Campos Dias; Octávio L. Franco
ABSTRACT Antimicrobial peptides (AMPs) are effective antibiotic agents commonly found in plants, animals, and microorganisms, and they have been suggested as the future of antimicrobial chemotherapies. It is vital to understand the molecular details that define the mechanism of action of resistance to AMPs for a rational planning of the next antibiotic generation and also to shed some light on the complex AMP mechanism of action. Here, the antibiotic resistance of Escherichia coli ATCC 8739 to magainin I was evaluated in the cytosolic subproteome. Magainin-resistant strains were selected after 10 subsequent spreads at subinhibitory concentrations of magainin I (37.5 mg · liter−1), and their cytosolic proteomes were further compared to those of magainin-susceptible strains through two-dimensional electrophoresis analysis. As a result, 41 differentially expressed proteins were detected by in silico analysis and further identified by tandem mass spectrometry de novo sequencing. Functional categorization indicated an intense metabolic response mainly in energy and nitrogen uptake, stress response, amino acid conversion, and cell wall thickness. Indeed, data reported here show that resistance to cationic antimicrobial peptides possesses a greater molecular complexity than previously supposed, resulting in cell commitment to several metabolic pathways.
Current Protein & Peptide Science | 2008
Angela Mehta; Beatriz Simas Magalhães; Djair dos Santos de Lima e Souza; Érico A. R. Vasconcelos; Luciano P. Silva; Maria Fatima Grossi-de-Sa; Octavio L. Franco; Paulo H. A. da Costa; Thales L. Rocha
In recent years, a strong emphasis has been given in deciphering the function of genes unraveled by the completion of several genome sequencing projects. In plants, functional genomics has been massively used in order to search for gene products of agronomic relevance. As far as root-pathogen interactions are concerned, several genes are recognized to provide tolerance/resistance against potential invaders. However, very few proteins have been identified by using current proteomic approaches. One of the major drawbacks for the successful analysis of root proteomes is the inherent characteristics of this tissue, which include low volume content and high concentration of interfering substances such as pigments and phenolic compounds. The proteome analysis of plant-pathogen interactions provides important information about the global proteins expressed in roots in response to biotic stresses. Moreover, several pathogenic proteins superimpose the plant proteome and can be identified and used as targets for the control of viruses, bacteria, fungi and nematode pathogens. The present review focuses on advances in different proteomic strategies dedicated to the challenging analysis of plant defense proteins expressed during bacteria-, fungi- and nematode-root interactions. Recent developments, limitations of the current techniques, and technological perspectives for root proteomics aiming at the identification of resistance-related proteins are discussed.
PLOS ONE | 2012
Ludovico Migliolo; Osmar N. Silva; Paula Danyelle Almeida da Silva; Maysa Paula da Costa; Carolina Rodrigues Costa; Diego O. Nolasco; João Alexandre Ribeiro Gonçalves Barbosa; Maria do Rosário Rodrigues Silva; Marcelo P. Bemquerer; Lidia M. P. Lima; Maria Teresa Villela Romanos; Sonia Maria de Freitas; Beatriz Simas Magalhães; Octavio L. Franco
Recently, defense peptides that are able to act against several targets have been characterized. The present work focuses on structural and functional evaluation of the peptide analogue Pa-MAP, previously isolated as an antifreeze peptide from Pleuronectes americanus. Pa-MAP showed activities against different targets such as tumoral cells in culture (CACO-2, MCF-7 and HCT-116), bacteria (Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 25923), viruses (HSV-1 and HSV-2) and fungi (Candida parapsilosis ATCC 22019, Trichophyton mentagrophytes (28d&E) and T. rubrum (327)). This peptide did not show toxicity against mammalian cells such as erythrocytes, Vero and RAW 264.7 cells. Molecular mechanism of action was related to hydrophobic residues, since only the terminal amino group is charged at pH 7 as confirmed by potentiometric titration. In order to shed some light on its structure-function relations, in vitro and in silico assays were carried out using circular dichroism and molecular dynamics. Furthermore, Pa-MAP showed partial unfolding of the peptide changes in a wide pH (3 to 11) and temperature (25 to 95°C) ranges, although it might not reach complete unfolding at 95°C, suggesting a high conformational stability. This peptide also showed a conformational transition with a partial α-helical fold in water and a full α-helical core in SDS and TFE environments. These results were corroborated by spectral data measured at 222 nm and by 50 ns dynamic simulation. In conclusion, data reported here show that Pa-MAP is a potential candidate for drug design against pathogenic microorganisms due to its structural stability and wide activity against a range of targets.
Biotechnology Advances | 2015
Kelly Mulder; Flávia Mulinari; Octavio L. Franco; Maria S.F. Soares; Beatriz Simas Magalhães; Nádia Skorupa Parachin
Lovastatin, composed of secondary metabolites produced by filamentous fungi, is the most frequently used drug for hypercholesterolemia treatment due to the fact that lovastatin is a competitive inhibitor of HMG-CoA reductase. Moreover, recent studies have shown several important applications for lovastatin including antimicrobial agents and treatments for cancers and bone diseases. Studies regarding the lovastatin biosynthetic pathway have also demonstrated that lovastatin is synthesized from two-chain reactions using acetate and malonyl-CoA as a substrate. It is also known that there are two key enzymes involved in the biosynthetic pathway called polyketide synthases (PKS). Those are characterized as multifunctional enzymes and are encoded by specific genes organized in clusters on the fungal genome. Since it is a secondary metabolite, cultivation process optimization for lovastatin biosynthesis has included nitrogen limitation and non-fermentable carbon sources such as lactose and glycerol. Additionally, the influences of temperature, pH, agitation/aeration, and particle and inoculum size on lovastatin production have been also described. Although many reviews have been published covering different aspects of lovastatin production, this review brings, for the first time, complete information about the genetic basis for lovastatin production, detection and quantification, strain screening and cultivation process optimization. Moreover, this review covers all the information available from patent databases covering each protected aspect during lovastatin bio-production.
PLOS ONE | 2014
Aline Melro Murad; Beatriz Simas Magalhães; Augusto C. Franco; Frederico Scherr Caldeira Takahashi; Nelson Gomes de Oliveira; Octavio L. Franco; Betania F. Quirino
Sugarcane (Saccharum spp.) is the world most productive sugar producing crop, making an understanding of its stress physiology key to increasing both sugar and ethanol production. To understand the behavior and salt tolerance mechanisms of sugarcane, two cultivars commonly used in Brazilian agriculture, RB867515 and RB855536, were submitted to salt stress for 48 days. Physiological parameters including net photosynthesis, water potential, dry root and shoot mass and malondialdehyde (MDA) content of leaves were determined. Control plants of the two cultivars showed similar values for most traits apart from higher root dry mass in RB867515. Both cultivars behaved similarly during salt stress, except for MDA levels for which there was a delay in the response for cultivar RB867515. Analysis of leaf macro- and micronutrients concentrations was performed and the concentration of Mn2+ increased on day 48 for both cultivars. In parallel, to observe the effects of salt stress on protein levels in leaves of the RB867515 cultivar, two-dimensional gel electrophoresis followed by MS analysis was performed. Four proteins were differentially expressed between control and salt-treated plants. Fructose 1,6-bisphosphate aldolase was down-regulated, a germin-like protein and glyceraldehyde 3-phosphate dehydrogenase showed increased expression levels under salt stress, and heat-shock protein 70 was expressed only in salt-treated plants. These proteins are involved in energy metabolism and defense-related responses and we suggest that they may be involved in protection mechanisms against salt stress in sugarcane.
Proteome Science | 2012
Ângela Tonietto; Bernardo A. Petriz; Wérika C Araújo; Ângela Mehta; Beatriz Simas Magalhães; Octávio L. Franco
BackgroundMicrocystis aeruginosa is a species of cyanobacteria commonly found in a number of countries and frequently related to animal poisoning episodes due to its capacity to produce the cyanotoxin known as microcystin. Despite vast literature on microcystin structures and their deleterious effects, little is known about its synthesis by cyanobacteria. Therefore, this study used proteomic tools to compare two M. aeruginosa strains, contrasting them for microcystin production.Results2-DE gels were performed and 30 differential protein spots were chosen. Among them, 11 protein spots were unique in the toxin producing strain and 8 in the non-toxin producing strain, and 14 protein spots were shown on both 2-DE gels but expressed differently in intensity. Around 57% of the tandem mass spectrometry identified proteins were related to energy metabolism, with these proteins being up-regulated in the toxin producing strain.ConclusionsThese data suggest that the presence of higher quantities of metabolic enzymes could be related to microcystin metabolism in comparison to the non-toxin producing strain. Moreover, it was suggested that the production of microcystin could also be related to other proteins than those directly involved in its production, such as the enzymes involved in the Calvin cycle and glycolysis.
Biochemical and Biophysical Research Communications | 2008
Beatriz Simas Magalhães; Jorge Alex Taquita Melo; José Roberto S. A. Leite; Luciano P. Silva; Maura V. Prates; Felipe Vinecky; Eder Alves Barbosa; Rodrigo M. Verly; Angela Mehta; Jacques Robert Nicoli; Marcelo P. Bemquerer; Alan Carvalho Andrade; Carlos Bloch
A novel family of antimicrobial peptides, named raniseptins, has been characterized from the skin secretion of the anuran Hypsiboas raniceps. Nine cDNA molecules have been successfully cloned, sequenced, and their respective polypeptides were characterized by mass spectrometry and Edman degradation. The encoded precursors share structural similarities with the dermaseptin prepropeptides from the Phyllomedusinae subfamily and the mature 28-29 residue long peptides undergo further proteolytic cleavage in the crude secretion yielding consistent fragments of 14-15 residues. The biological assays performed demonstrated that the Rsp-1 peptide has antimicrobial activity against different bacterial strains without significant lytic effect against human erythrocytes, whereas the peptide fragments generated by endoproteolysis show limited antibiotic potency. MALDI imaging mass spectrometry in situ studies have demonstrated that the mature raniseptin peptides are in fact secreted as intact molecules within a defined glandular domain of the dorsal skin, challenging the physiological role of the observed raniseptin fragments, identified only as part of the crude secretion. In this sense, stored and secreted antimicrobial peptides may confer distinct protective roles to the frog.
Microbial Cell Factories | 2016
Juliana Davies de Oliveira; Lucas Silva Carvalho; Antônio Milton Vieira Gomes; Lúcio Rezende Queiroz; Beatriz Simas Magalhães; Nádia Skorupa Parachin
Hyaluronic acid, or HA, is a rigid and linear biopolymer belonging to the class of the glycosaminoglycans, and composed of repeating units of the monosaccharides glucuronic acid and N-acetylglucosamine. HA has multiple important functions in the human body, due to its properties such as bio-compatibility, lubricity and hydrophilicity, it is widely applied in the biomedical, food, health and cosmetic fields. The growing interest in this molecule has motivated the discovery of new ways of obtaining it. Traditionally, HA has been extracted from rooster comb-like animal tissues. However, due to legislation laws HA is now being produced by bacterial fermentation using Streptococcus zooepidemicus, a natural producer of HA, despite it being a pathogenic microorganism. With the expansion of new genetic engineering technologies, the use of organisms that are non-natural producers of HA has also made it possible to obtain such a polymer. Most of the published reviews have focused on HA formulation and its effects on different body tissues, whereas very few of them describe the microbial basis of HA production. Therefore, for the first time this review has compiled the molecular and genetic bases for natural HA production in microorganisms together with the main strategies employed for heterologous production of HA.