Beatriz Trenor
Polytechnic University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beatriz Trenor.
PLOS ONE | 2012
Beatriz Trenor; Karen Cardona; Juan F. Gomez; Sridharan Rajamani; J.M. Ferrero; Luiz Belardinelli; Javier Saiz
Heart failure constitutes a major public health problem worldwide. The electrophysiological remodeling of failing hearts sets the stage for malignant arrhythmias, in which the role of the late Na+ current (INaL) is relevant and is currently under investigation. In this study we examined the role of INaL in the electrophysiological phenotype of ventricular myocytes, and its proarrhythmic effects in the failing heart. A model for cellular heart failure was proposed using a modified version of Grandi et al. model for human ventricular action potential that incorporates the formulation of INaL. A sensitivity analysis of the model was performed and simulations of the pathological electrical activity of the cell were conducted. The proposed model for the human INaL and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. The sensitivity analysis of the modulation of electrophysiological parameters of myocytes from failing hearts due to ion channels remodeling, revealed a role for INaL in the prolongation of action potential duration (APD), triangulation of the shape of the AP, and changes in Ca2+ transient. A mechanistic investigation of intracellular Na+ accumulation and APD shortening with increasing frequency of stimulation of failing myocytes revealed a role for the Na+/K+ pump, the Na+/Ca2+ exchanger and INaL. The results of the simulations also showed that in failing myocytes, the enhancement of INaL increased the reverse rate-dependent APD prolongation and the probability of initiating early afterdepolarizations. The electrophysiological remodeling of failing hearts and especially the enhancement of the INaL prolong APD and alter Ca2+ transient facilitating the development of early afterdepolarizations. An enhanced INaL appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of [Ca2+]i homeostasis of failing myocytes.
International Journal of Bifurcation and Chaos | 2003
J.M. Ferrero; Beatriz Trenor; Blanca Rodriguez; Javier Saiz
In this work, the authors use computer modeling to theoretically investigate the mechanisms involved in figure-of-eight reentry during acute regional myocardial ischemia, a pattern of excitation which may lead to ventricular fibrillation and sudden cardiac death. For this purpose, a modified version of the Luo–Rudy dynamic model for the action potential and ionic currents has been used, together with a two-dimensional model of the regionally ischemic ventricle. The virtual tissue comprises several realistically dimensioned and located transitional border zones for hyperkalemia, hypoxia and acidosis, simulating the substrate heterogeneity created by acute ischemia. Different types of patterns of excitation following the delivery of a premature stimulus were obtained, including figure-of-eight reentry. Action potentials and selected ionic currents which explain the reentry process are analyzed. The effect of the degree of ATP-sensitive current activation in the vulnerability to reentry is also studied. The results are in accordance with experimental observations, and demonstrate the ability of second-generation mathematical models to analyze and explain the mechanisms involved in ischemic reentry.
Progress in Biophysics & Molecular Biology | 2011
Lucia Romero; Beatriz Carbonell; Beatriz Trenor; Blanca Rodriguez; Javier Saiz; J.M. Ferrero
Several mathematical models of rabbit ventricular action potential (AP) have been proposed to investigate mechanisms of arrhythmias and excitation-contraction coupling. Our study aims at systematically characterizing how ionic current properties modulate the main cellular biomarkers of arrhythmic risk using two widely-used rabbit ventricular models, and comparing simulation results using the two models with experimental data available for rabbit. A sensitivity analysis of AP properties, Ca²⁺ and Na⁺ dynamics, and their rate dependence to variations (±15% and ±30%) in the main transmembrane current conductances and kinetics was performed using the Shannon et al. (2004) and the Mahajan et al. (2008a,b) AP rabbit models. The effects of severe transmembrane current blocks (up to 100%) on steady-state AP and calcium transients, and AP duration (APD) restitution curves were also simulated using both models. Our simulations show that, in both virtual rabbit cardiomyocytes, APD is significantly modified by most repolarization currents, AP triangulation is regulated mostly by the inward rectifier K⁺ current (I(K1)) whereas APD rate adaptation as well as [Na⁺](i) rate dependence is influenced by the Na⁺/K⁺ pump current (I(NaK)). In addition, steady-state [Ca²⁺](i) levels, APD restitution properties and [Ca²⁺](i) rate dependence are strongly dependent on I(NaK), the L-Type Ca²⁺ current (I(CaL)) and the Na⁺/Ca²⁺ exchanger current (I(NaCa)), although the relative role of these currents is markedly model dependent. Furthermore, our results show that simulations using both models agree with many experimentally-reported electrophysiological characteristics. However, our study shows that the Shannon et al. model mimics rabbit electrophysiology more accurately at normal pacing rates, whereas Mahajan et al. model behaves more appropriately at faster rates. Our results reinforce the usefulness of sensitivity analysis for further understanding of cellular electrophysiology and validation of cardiac AP models.
PLOS ONE | 2014
Juan F. Gomez; Karen Cardona; Lucia Romero; J.M. Ferrero; Beatriz Trenor
Background Heart failure is a final common pathway or descriptor for various cardiac pathologies. It is associated with sudden cardiac death, which is frequently caused by ventricular arrhythmias. Electrophysiological remodeling, intercellular uncoupling, fibrosis and autonomic imbalance have been identified as major arrhythmogenic factors in heart failure etiology and progression. Objective In this study we investigate in silico the role of electrophysiological and structural heart failure remodeling on the modulation of key elements of the arrhythmogenic substrate, i.e., electrophysiological gradients and abnormal impulse propagation. Methods Two different mathematical models of the human ventricular action potential were used to formulate models of the failing ventricular myocyte. This provided the basis for simulations of the electrical activity within a transmural ventricular strand. Our main goal was to elucidate the roles of electrophysiological and structural remodeling in setting the stage for malignant life-threatening arrhythmias. Results Simulation results illustrate how the presence of M cells and heterogeneous electrophysiological remodeling in the human failing ventricle modulate the dispersion of action potential duration and repolarization time. Specifically, selective heterogeneous remodeling of expression levels for the Na+/Ca2+ exchanger and SERCA pump decrease these heterogeneities. In contrast, fibroblast proliferation and cellular uncoupling both strongly increase repolarization heterogeneities. Conduction velocity and the safety factor for conduction are also reduced by the progressive structural remodeling during heart failure. Conclusion An extensive literature now establishes that in human ventricle, as heart failure progresses, gradients for repolarization are changed significantly by protein specific electrophysiological remodeling (either homogeneous or heterogeneous). Our simulations illustrate and provide new insights into this. Furthermore, enhanced fibrosis in failing hearts, as well as reduced intercellular coupling, combine to increase electrophysiological gradients and reduce electrical propagation. In combination these changes set the stage for arrhythmias.
Annals of Biomedical Engineering | 2005
Beatriz Trenor; J.M. Ferrero; Blanca Rodriguez; F. Montilla
Many experimental studies have pointed out the controversy involving the arrhythmogenic effects of potassium channel openers (KCOs) in ischemia. KCOs activate the ATP-sensitive potassium current [IK(ATP)], resulting in action potential duration (APD) shortening, especially under pathological conditions such as ischemia. Acute myocardial ischemia leads to electrophysiological inhomogeneities in APD, conduction velocity, and refractoriness, which provide the substrate for reentry initiation and maintenance and may lead to malignant arrhythmias. The aim of this work is to analyze the effect of the KCO pinacidil on vulnerability to reentry during acute regional ischemia using computer simulations. We use a two-dimensional virtual heart tissue with implementation of acute regional ischemia conditions. Membrane kinetics are represented by a modified version of Luo–Rudy (phase II) action potential model that incorporates the effect of pinacidil on IK(ATP). The vulnerable window (VW) for reentry is quantified for different doses of pinacidil. Our results show that for doses below 3 μmol/l the VW widens with increasing pinacidil concentration, whereas for higher doses of pinacidil the VW decreases, becoming zero for concentrations above 10 μmol/l. The ionic mechanisms involved in this behavior are explored. This study demonstrates that the effect of pinacidil on arrhythmogenesis is strongly dose-dependent, and that high doses of pinacidil exert a strong antiarrhythmic effect.
Annals of Biomedical Engineering | 2009
Lucia Romero; Beatriz Trenor; José M. Alonso; Catalina Tobón; Javier Saiz; J.M. Ferrero
During acute myocardial ischemia, reentrant episodes may lead to ventricular fibrillation (VF), giving rise to potentially mortal arrhythmias. VF has been traditionally related to dispersion of refractoriness and more recently to the source–sink relationship. Our goal is to theoretically investigate the relative role of dispersion of refractoriness and source–sink mismatch in vulnerability to reentry in the specific situation of regional myocardial acute ischemia. The electrical activity of a regionally ischemic tissue was simulated using a modified version of the Luo-Rudy dynamic model. Ischemic conditions were varied to simulate the time-course of acute ischemia. Our results showed that dispersion of refractoriness increased with the severity of ischemia. However, no correlation between dispersion of refractoriness and the width of the vulnerable window was found. Additionally, in approximately 50% of the reentries, unidirectional block (UDB) took place in cells completely recovered from refractoriness. We examined patterns of activation after premature stimulation and they were intimately related to the source–sink relationship, quantified by the safety factor (SF). Moreover, the isoline where the SF dropped below unity matched the area where propagation failed. It was concluded that the mismatch of the source–sink relationship, rather than solely refractoriness, was the ultimate cause of the UDB leading to reentry. The SF represents a very powerful tool to study the mechanisms responsible for reentry.
Channels | 2013
Beatriz Trenor; Julio Gomis-Tena; Karen Cardona; Lucia Romero; Sridharan Rajamani; Luiz Belardinelli; Wayne R. Giles; Javier Saiz
Drug-induced action potential (AP) prolongation leading to Torsade de Pointes is a major concern for the development of anti-arrhythmic drugs. Nevertheless the development of improved anti-arrhythmic agents, some of which may block different channels, remains an important opportunity. Partial block of the late sodium current (INaL) has emerged as a novel anti-arrhythmic mechanism. It can be effective in the settings of free radical challenge or hypoxia. In addition, this approach can attenuate pro-arrhythmic effects of blocking the rapid delayed rectifying K+ current (IKr). The main goal of our computational work was to develop an in-silico tool for preclinical anti-arrhythmic drug safety assessment, by illustrating the impact of IKr/INaL ratio of steady-state block of drug candidates on “torsadogenic” biomarkers. The O’Hara et al. AP model for human ventricular myocytes was used. Biomarkers for arrhythmic risk, i.e., AP duration, triangulation, reverse rate-dependence, transmural dispersion of repolarization and electrocardiogram QT intervals, were calculated using single myocyte and one-dimensional strand simulations. Predetermined amounts of block of INaL and IKr were evaluated. “Safety plots” were developed to illustrate the value of the specific biomarker for selected combinations of IC50s for IKr and INaL of potential drugs. The reference biomarkers at baseline changed depending on the “drug” specificity for these two ion channel targets. Ranolazine and GS967 (a novel potent inhibitor of INaL) yielded a biomarker data set that is considered safe by standard regulatory criteria. This novel in-silico approach is useful for evaluating pro-arrhythmic potential of drugs and drug candidates in the human ventricle.
Europace | 2014
J.M. Ferrero; Beatriz Trenor; Lucia Romero
Ischaemic heart disease is considered as the single most frequent cause of death, provoking more than 7 000 000 deaths every year worldwide. A high percentage of patients experience sudden cardiac death, caused in most cases by tachyarrhythmic mechanisms associated to myocardial ischaemia and infarction. These diseases are difficult to study using solely experimental means due to their complex dynamics and unstable nature. In the past decades, integrative computational simulation techniques have become a powerful tool to complement experimental and clinical research when trying to elucidate the intimate mechanisms of ischaemic electrophysiological processes and to aid the clinician in the improvement and optimization of therapeutic procedures. The purpose of this paper is to briefly review some of the multiscale computational models of myocardial ischaemia and infarction developed in the past 20 years, ranging from the cellular level to whole-heart simulations.
Journal of Molecular and Cellular Cardiology | 2016
Katherine M. Holzem; Juan F. Gomez; Alexey V. Glukhov; Eli J. Madden; Aaron C. Koppel; Gregory A. Ewald; Beatriz Trenor; Igor R. Efimov
Heart failure (HF) claims 250,000 lives per year in the US, and nearly half of these deaths are sudden and presumably due to ventricular tachyarrhythmias. QT interval and action potential (AP) prolongation are hallmark proarrhythmic changes in the failing myocardium, which potentially result from alterations in repolarizing potassium currents. Thus, we aimed to examine whether decreased expression of the rapid delayed rectifier potassium current, IKr, contributes to repolarization abnormalities in human HF. To map functional IKr expression across the left ventricle (LV), we optically imaged coronary-perfused LV free wall from donor and end-stage failing human hearts. The LV wedge preparation was used to examine transmural AP durations at 80% repolarization (APD80), and treatment with the IKr-blocking drug, E-4031, was utilized to interrogate functional expression. We assessed the percent change in APD80 post-IKr blockade relative to baseline APD80 (∆APD80) and found that ∆APD80s are reduced in failing versus donor hearts in each transmural region, with 0.35-, 0.43-, and 0.41-fold reductions in endo-, mid-, and epicardium, respectively (p=0.008, 0.037, and 0.022). We then assessed hERG1 isoform gene and protein expression levels using qPCR and Western blot. While we did not observe differences in hERG1a or hERG1b gene expression between donor and failing hearts, we found a shift in the hERG1a:hERG1b isoform stoichiometry at the protein level. Computer simulations were then conducted to assess IKr block under E-4031 influence in failing and nonfailing conditions. Our results confirmed the experimental observations and E-4031-induced relative APD80 prolongation was greater in normal conditions than in failing conditions, provided that the cellular model of HF included a significant downregulation of IKr. In human HF, the response to IKr blockade is reduced, suggesting decreased functional IKr expression. This attenuated functional response is associated with altered hERG1a:hERG1b protein stoichiometry in the failing human LV, and failing cardiomyoctye simulations support the experimental findings. Thus, of IKr protein and functional expression may be important determinants of repolarization remodeling in the failing human LV.
computing in cardiology conference | 2008
Rodolfo Gonzalez; Alain Manzo; J Delgado; Jm Padilla; Beatriz Trenor; Javier Saiz
A computer based photoplethysmographic analyzer was developed. The signal was obtained by infrared light through the finger. It was converted into digital domain by a signal processing circuitry. First, second and fourth derivatives of the signal were computed. The acquisition and mathematical processing programs were implemented in object-oriented programming C. A study with 38 people, 19 healthy volunteers and 19 subjects with previously diagnosed cardiovascular disease (atherosclerosis, hypertension, diabetes mellitus) was carried out. A t-tested distribution between healthy volunteers and patients showed a significant differences in calculated parameters. Photoplethysmographic augmentation index has shown to be a noninvasive parameter for vascular assessments. Using derivatives, the inflection points identification of the digital volume pulse is simpler and more accurate.