Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beau Pontre is active.

Publication


Featured researches published by Beau Pontre.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Visualizing ocular lens fluid dynamics using MRI: manipulation of steady state water content and water fluxes

Ehsan Vaghefi; Beau Pontre; Marc D. Jacobs; Paul J. Donaldson

Studies using various MRI techniques have shown that a water-protein concentration gradient exists in the ocular lens. Because this concentration is higher in the core relative to the lens periphery, a gradient in refractive index is established in the lens. To investigate how the water-protein concentration profile is maintained, bovine lenses were incubated in different solutions, and changes in water-protein concentration ratio monitored using proton density weighted (PD-weighted) imaging in the absence and presence of heavy water (D(2)O). Lenses incubated in artificial aqueous humor (AAH) maintained the steady state water-protein concentration gradient, but incubating lenses in high extracellular potassium (KCl-AAH) or low temperature (Low T-AAH) caused a collapse of the gradient due to a rise in water content in the core of the lens. To visualize water fluxes, lenses were incubated in D(2)O, which acts as a contrast agent. Incubation in KCl-AAH and low T-AAH dramatically slowed the movement of D(2)O into the core but did not affect the movement of D(2)O into the outer cortex. D(2)O seemed to preferentially enter the lens cortex at the anterior and posterior poles before moving circumferentially toward the equatorial regions. This directionality of D(2)O influx into the lens cortex was abolished by incubating lenses in high KCl-AAH or low T-AAH, and resulted in homogenous influx of D(2)O into the outer cortex. Taken together, our results show that the water-protein concentration ratio is actively maintained in the core of the lens and that water fluxes preferentially enter the lens at the poles.


Physiological Measurement | 2009

Visualization of transverse diffusion paths across fiber cells of the ocular lens by small animal MRI

Ehsan Vaghefi; Beau Pontre; Paul J. Donaldson; Peter Hunter; Marc D. Jacobs

The sense of vision requires that light penetrate through the ocular lens. Experiments, performed and published by many research groups, have suggested that the lens, which has no blood vessels, relies on internally directed ion and water fluxes for its circulation, survival and transparency. We investigated the internal diffusive pathways of the lens in order to better understand the constraints that may be operating on directional lens fluxes. Small animal magnetic resonance imaging, including T2-weighted and diffusion tensor imaging, was used to measure tissue properties and diffusivity throughout cultured bovine lenses. A range of concentric regions of signal intensity was distinguished inside the lens, by both T2-weighted signal and mean diffusivity. Diffusivity mapping of the lens revealed novel anisotropic polar and equatorial zones of pronounced diffusivity directed transverse to the fiber cells. In contrast, an inner zone including the lens nucleus showed isotropic and weak diffusivity. Our results lend support to models of internally directed lens micro-circulation, by placing non-structural diffusive constraints on global patterns of fluid circulation.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Magnetic resonance and confocal imaging of solute penetration into the lens reveals a zone of restricted extracellular space diffusion

Ehsan Vaghefi; Kerry L. Walker; Beau Pontre; Marc D. Jacobs; Paul J. Donaldson

It has been proposed that in the absence of blood supply, the ocular lens operates an internal microcirculation system that delivers nutrients to internalized fiber cells faster and more efficiently than would occur by passive diffusion alone. To visualize the extracellular space solute fluxes potentially generated by this system, bovine lenses were organ cultured in artificial aqueous humor (AAH) for 4 h in the presence or absence of two gadolinium-based contrast agents, ionic Gd(3+), or a chelated form of Gd(3+), Gd-diethylenetriamine penta-acetic acid (Gd-DTPA; mol mass = 590 Da). Contrast reagent penetration into the lens core was monitored in real time using inversion recovery-spin echo (IR-SE) magnetic resonance imaging (MRI), while steady-state accumulation of [Gd-DTPA](-2) was also determined by calculating T1 values. After incubation, lenses were fixed and cryosectioned, and sections were labeled with the membrane marker wheat germ agglutinin (WGA). Sections were imaged by confocal microscopy using standard and reflectance imaging modalities to visualize the fluorescent WGA label and gadolinium reagents, respectively. Real-time IR-SE MRI showed rapid penetration of Gd(3+) into the outer cortex of the lens and a subsequent bloom of signal in the core. These two areas of signal were separated by an area in the inner cortex that limited entry of Gd(3+). Similar results were obtained for Gd-DTPA, but the penetration of the larger negatively charged molecule into the core could only be detected by calculating T1 values. The presence of Gd-DTPA in the extracellular space of the outer cortex and core, but its apparent absence from the inner cortex was confirmed using reflectance imaging of equatorial sections. In axial sections, Gd-DTPA was associated with the sutures, suggesting these structures provide a pathway from the surface, across the inner cortex barrier to the lens core. Our studies have revealed inner and outer boundaries of a zone within which a narrowing of the extracellular space restricts solute diffusion and acts to direct fluxes into the lens core via the sutures.


Journal of Magnetic Resonance Imaging | 2014

Markers of cochlear inflammation using MRI

Johann Le Floc'h; Winston Tan; Ravindra Telang; Srdjan M. Vlajkovic; Alfred L. Nuttall; William D. Rooney; Beau Pontre; Peter R. Thorne

To quantify spatial and temporal inflammation‐induced changes in vascular permeability and macrophage infiltration in guinea‐pig (GP) cochlea using MRI.


Medical Image Analysis | 2016

Cardiac image modelling: Breadth and depth in heart disease

Avan Suinesiaputra; Andrew D. McCulloch; Martyn P. Nash; Beau Pontre; Alistair A. Young

With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are computational analysis of cardiac remodelling (shape and motion changes due to disease) and computational analysis of physiology and mechanics to estimate biophysical properties from non-invasive imaging. Many large cohort studies now underway around the world have been specifically designed based on non-invasive imaging technologies in order to gain new information about the development of heart disease from asymptomatic to clinical manifestations. These give an unprecedented breadth to the quantification of population variation and disease development. Also, for the individual patient, it is now possible to determine biophysical properties of myocardial tissue in health and disease by interpreting detailed imaging data using computational modelling. For these population and patient-specific computational modelling methods to develop further, we need open benchmarks for algorithm comparison and validation, open sharing of data and algorithms, and demonstration of clinical efficacy in patient management and care. The combination of population and patient-specific modelling will give new insights into the mechanisms of cardiac disease, in particular the development of heart failure, congenital heart disease, myocardial infarction, contractile dysfunction and diastolic dysfunction.


Clinical Physiology and Functional Imaging | 2017

An interactive tool for rapid biventricular analysis of congenital heart disease.

Kathleen Gilbert; Hoi Ieng Lam; Beau Pontre; Brett R. Cowan; Christopher J. Occleshaw; J. Y. Liu; Alistair A. Young

Cardiac malformations are the most common birth defect. Better interventions in early life have improved mortality for children with congenital heart disease, but heart failure is a significant problem in adulthood. These patients require regular imaging and analysis of biventricular (left and right ventricular) function. In this study, we describe a rapid method to analyse left and right ventricular shape and function from cardiac MRI examinations. A 4D (3D+time) finite element model template is interactively customized to the anatomy and motion of the biventricular unit. The method was validated in 17 patients and 10 ex‐vivo hearts. Interactive model updates were achieved through preconditioned conjugate gradient optimization on a multithread system, and by precomputing points predicted from a coarse mesh optimization.


international conference of the ieee engineering in medicine and biology society | 2015

Creating shape templates for patient specific biventricular modeling in congenital heart disease

Kathleen Gilbert; Genevieve Farrar; Brett R. Cowan; Avan Suinesiaputra; Christopher J. Occleshaw; Beau Pontre; James C. Perry; Sanjeet Hegde; Alison L. Marsden; Jeffrey H. Omens; Andrew D. McCulloch; Alistair A. Young

Survival rates for infants with congenital heart disease (CHD) are improving, resulting in a growing population of adults with CHD. However, the analysis of left and right ventricular function is very time-consuming owing to the variety of congenital morphologies. Efficient customization of patient geometry and function depends on high quality shape templates specifically designed for the application. In this paper, we combine a method for creating finite element shape templates with an interactive template customization to patient MRI examinations. This enables different templates to be chosen depending on patient morphology. To demonstrate this pipeline, a new biventricular template with 162 elements was created and tested in place of an existing 82-element template. The method was able to provide fast interactive biventricular analysis with 0.31 sec per edit response time. The new template was customized to 13 CHD patients with similar biventricular topology, showing improved performance over the previous template and good agreement with clinical indices.


Journal of Magnetic Resonance Imaging | 2015

MRI interactions of a fully implantable pressure monitoring device

Ellyce Stehlin; Daniel McCormick; Simon C. Malpas; Beau Pontre; Peter A. Heppner; David Budgett

To investigate the potential patient risk and interactions between a prototype implantable pressure monitoring device and a 3T clinical magnetic resonance imaging (MRI) machine to guide device design towards MR Conditional safety approval.


BioMed Research International | 2016

Application of Arterial Spin Labelling in the Assessment of Ocular Tissues

Ehsan Vaghefi; Beau Pontre

Arterial spin labelling (ASL) is a noninvasive magnetic resonance imaging (MRI) modality, capable of measuring blood perfusion without the use of a contrast agent. While ASL implementation for imaging the brain and monitoring cerebral blood flow has been reviewed in depth, the technique is yet to be widely used for ocular tissue imaging. The human retina is a very thin but highly stratified structure and it is also situated close to the surface of the body which is not ideal for MR imaging. Hence, the application of MR imaging and ASL in particular has been very challenging for ocular tissues and retina. That is despite the fact that almost all of retinal pathologies are accompanied by blood perfusion irregularities. In this review article, we have focused on the technical aspects of the ASL and their implications for its optimum adaptation for retinal blood perfusion monitoring. Retinal blood perfusion has been assessed through qualitative or invasive quantitative methods but the prospect of imaging flow using ASL would increase monitoring and assessment of retinal pathologies. The review provides details of ASL application in human ocular blood flow assessment.


Physiological Genomics | 2009

New Zealand Ginger mouse: novel model that associates the tyrp1b pigmentation gene locus with regulation of lean body mass

Cécile E. Duchesnes; Jürgen K. Naggert; Michele A. Tatnell; Nikki Beckman; Rebecca N. Marnane; Jessica A. Rodrigues; Angela Halim; Beau Pontre; Alistair W. Stewart; George L. Wolff; Robert Elliott; Kathleen G. Mountjoy

The study of spontaneous mutations in mice over the last century has been fundamental to our understanding of normal physiology and mechanisms of disease. Here we studied the phenotype and genotype of a novel mouse model we have called the New Zealand Ginger (NZG/Kgm) mouse. NZG/Kgm mice are very large, rapidly growing, ginger-colored mice with pink eyes. Breeding NZG/Kgm mice with CAST/Ei or C57BL/6J mice showed that the ginger coat colour is a recessive trait, while the excessive body weight and large body size exhibit a semidominant pattern of inheritance. Backcrossing F1 (NZG/Kgm x CAST/Ei) to NZG/Kgm mice to produce the N2 generation determined that the NZG/Kgm mouse has two recessive pigmentation variant genes (oca2(p) and tyrp-1(b)) and that the tyrp-1(b) gene locus associates with large body size. Three coat colors appeared in the N2 generation; ginger, brown, and dark. Strikingly, N2 male coat colour associated with body weight; the brown-colored mice weighed the most followed by ginger and then dark. The male brown coat-colored offspring reached adult body weights indistinguishable from NZG/Kgm males. The large NZG/Kgm mouse body size is a result of excessive lean body mass since these mice are not obese or diabetic. NZG/Kgm mice exhibit an unusual pattern of fat distribution; compared with other mouse strains they have disproportionately higher amounts of subcutaneous and gonadal fat. These mice are susceptible to high-fat diet-induced obesity but are resistant to high-fat diet-induced diabetes. We propose NZG/Kgm mice as a novel model to delineate gene(s) that regulate 1) growth and metabolism, 2) resistance to Type 2 diabetes, and 3) preferential fat deposition in the subcutaneous and gonadal areas.

Collaboration


Dive into the Beau Pontre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge