Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beben Benyamin is active.

Publication


Featured researches published by Beben Benyamin.


Nature Communications | 2015

Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis (vol 5, 4926, 2014)

Beben Benyamin; Tonu Esko; Janina S. Ried; Aparna Radhakrishnan; Sita H. Vermeulen; Michela Traglia; Martin Goegele; Denise Anderson; Linda Broer; Clara Podmore; Jian'an Luan; Zoltán Kutalik; Serena Sanna; Peter van der Meer; Toshiko Tanaka; Fudi Wang; Harm-Jan Westra; Lude Franke; Evelin Mihailov; Lili Milani; Jonas Haelldin; Juliane Winkelmann; Thomas Meitinger; Joachim Thiery; Annette Peters; Melanie Waldenberger; Augusto Rendon; Jennifer Jolley; Jennifer Sambrook; Lambertus A. Kiemeney

Corrigendum: Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis


Nature Genetics | 2015

Meta-analysis of the heritability of human traits based on fifty years of twin studies

Tinca J.C. Polderman; Beben Benyamin; Christiaan de Leeuw; Patrick F. Sullivan; Arjen van Bochoven; Peter M. Visscher; Danielle Posthuma

Despite a century of research on complex traits in humans, the relative importance and specific nature of the influences of genes and environment on human traits remain controversial. We report a meta-analysis of twin correlations and reported variance components for 17,804 traits from 2,748 publications including 14,558,903 partly dependent twin pairs, virtually all published twin studies of complex traits. Estimates of heritability cluster strongly within functional domains, and across all traits the reported heritability is 49%. For a majority (69%) of traits, the observed twin correlations are consistent with a simple and parsimonious model where twin resemblance is solely due to additive genetic variation. The data are inconsistent with substantial influences from shared environment or non-additive genetic variation. This study provides the most comprehensive analysis of the causes of individual differences in human traits thus far and will guide future gene-mapping efforts. All the results can be visualized using the MaTCH webtool.


Nature Genetics | 2009

Common variants in TMPRSS6 are associated with iron status and erythrocyte volume

Beben Benyamin; Manuel A. Ferreira; Gonneke Willemsen; Scott D. Gordon; Rita P. S. Middelberg; Brian P. McEvoy; Jouke-Jan Hottenga; Anjali K. Henders; Megan J. Campbell; Leanne Wallace; Andrew C. Heath; Eco J. C. de Geus; Dale R. Nyholt; Peter M. Visscher; Brenda W.J.H. Penninx; Dorret I. Boomsma; Nicholas G. Martin; Grant W. Montgomery; John Whitfield

We report a genome-wide association study to iron status. We identify an association of SNPs in TPMRSS6 to serum iron (rs855791, combined P = 1.5 × 10−20), transferrin saturation (combined P = 2.2 × 10−23) and erythrocyte mean cell volume (MCV, combined P = 1.1 × 10−10). We also find suggestive evidence of association with blood hemoglobin levels (combined P = 5.3 × 10−7). These findings demonstrate the involvement of TMPRSS6 in control of iron homeostasis and in normal erythropoiesis.


PLOS Genetics | 2005

Combined Genome Scans for Body Stature in 6,602 European Twins: Evidence for Common Caucasian Loci

Markus Perola; Sampo Sammalisto; Tero Hiekkalinna; Nicholas G. Martin; Peter M. Visscher; Grant W. Montgomery; Beben Benyamin; Jennifer R. Harris; Dorret I. Boomsma; Gonneke Willemsen; Jouke-Jan Hottenga; Kaare Christensen; Kirsten Ohm Kyvik; Thorkild I. A. Sørensen; Nancy L. Pedersen; Patrik K. E. Magnusson; Tim D. Spector; Elisabeth Widen; Karri Silventoinen; Jaakko Kaprio; Aarno Palotie; Leena Peltonen

Twin cohorts provide a unique advantage for investigations of the role of genetics and environment in the etiology of variation in common complex traits by reducing the variance due to environment, age, and cohort differences. The GenomEUtwin (http://www.genomeutwin.org) consortium consists of eight twin cohorts (Australian, Danish, Dutch, Finnish, Italian, Norwegian, Swedish, and United Kingdom) with the total resource of hundreds of thousands of twin pairs. We performed quantitative trait locus (QTL) analysis of one of the most heritable human complex traits, adult stature (body height) using genome-wide scans performed for 3,817 families (8,450 individuals) derived from twin cohorts from Australia, Denmark, Finland, Netherlands, Sweden, and United Kingdom with an approximate ten-centimorgan microsatellite marker map. The marker maps for different studies differed and they were combined and related to the sequence positions using software developed by us, which is publicly available (https://apps.bioinfo.helsinki.fi/software/cartographer.aspx). Variance component linkage analysis was performed with age, sex, and country of origin as covariates. The covariate adjusted heritability was 81% for stature in the pooled dataset. We found evidence for a major QTL for human stature on 8q21.3 (multipoint logarithm of the odds 3.28), and suggestive evidence for loci on Chromosomes X, 7, and 20. Some evidence of sex heterogeneity was found, however, no obvious female-specific QTLs emerged. Several cohorts contributed to the identified loci, suggesting an evolutionarily old genetic variant having effects on stature in European-based populations. To facilitate the genetic studies of stature we have also set up a website that lists all stature genome scans published and their most significant loci (http://www.genomeutwin.org/stature_gene_map.htm).


Molecular Psychiatry | 2014

Childhood intelligence is heritable, highly polygenic and associated with FNBP1L.

Beben Benyamin; Beate St Pourcain; Oliver S. P. Davis; Gail Davies; Narelle K. Hansell; M-Ja Brion; Robert M. Kirkpatrick; Rolieke Cents; Sanja Franić; Mike Miller; Claire M. A. Haworth; Emma L. Meaburn; Thomas S. Price; David Evans; Nicholas J. Timpson; John P. Kemp; S. M. Ring; Wendy L. McArdle; Sarah E. Medland; Jian Yang; Sarah E. Harris; David C. Liewald; P Scheet; Xiangjun Xiao; James J. Hudziak; E.J.C. de Geus; Vincent W. V. Jaddoe; Frank C. Verhulst; Craig E. Pennell; Henning Tiemeier

Intelligence in childhood, as measured by psychometric cognitive tests, is a strong predictor of many important life outcomes, including educational attainment, income, health and lifespan. Results from twin, family and adoption studies are consistent with general intelligence being highly heritable and genetically stable throughout the life course. No robustly associated genetic loci or variants for childhood intelligence have been reported. Here, we report the first genome-wide association study (GWAS) on childhood intelligence (age range 6–18 years) from 17 989 individuals in six discovery and three replication samples. Although no individual single-nucleotide polymorphisms (SNPs) were detected with genome-wide significance, we show that the aggregate effects of common SNPs explain 22–46% of phenotypic variation in childhood intelligence in the three largest cohorts (P=3.9 × 10−15, 0.014 and 0.028). FNBP1L, previously reported to be the most significantly associated gene for adult intelligence, was also significantly associated with childhood intelligence (P=0.003). Polygenic prediction analyses resulted in a significant correlation between predictor and outcome in all replication cohorts. The proportion of childhood intelligence explained by the predictor reached 1.2% (P=6 × 10−5), 3.5% (P=10−3) and 0.5% (P=6 × 10−5) in three independent validation cohorts. Given the sample sizes, these genetic prediction results are consistent with expectations if the genetic architecture of childhood intelligence is like that of body mass index or height. Our study provides molecular support for the heritability and polygenic nature of childhood intelligence. Larger sample sizes will be required to detect individual variants with genome-wide significance.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Common genetic variants associated with cognitive performance identified using the proxy-phenotype method

Cornelius A. Rietveld; Tonu Esko; Gail Davies; Tune H. Pers; Patrick Turley; Beben Benyamin; Christopher F. Chabris; Valur Emilsson; Andrew D. Johnson; James J. Lee; Christiaan de Leeuw; Riccardo E. Marioni; Sarah E. Medland; Michael B. Miller; Olga Rostapshova; Sven J. van der Lee; Anna A. E. Vinkhuyzen; Najaf Amin; Dalton Conley; Jaime Derringer; Cornelia M. van Duijn; Rudolf S. N. Fehrmann; Lude Franke; Edward L. Glaeser; Narelle K. Hansell; Caroline Hayward; William G. Iacono; Carla A. Ibrahim-Verbaas; Vincent W. V. Jaddoe; Juha Karjalainen

Significance We identify several common genetic variants associated with cognitive performance using a two-stage approach: we conduct a genome-wide association study of educational attainment to generate a set of candidates, and then we estimate the association of these variants with cognitive performance. In older Americans, we find that these variants are jointly associated with cognitive health. Bioinformatics analyses implicate a set of genes that is associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory. In addition to the substantive contribution, this work also serves to show a proxy-phenotype approach to discovering common genetic variants that is likely to be useful for many phenotypes of interest to social scientists (such as personality traits). We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxy-phenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated SNPs. Second, using independent samples (n = 24,189), we measure the association of these education-associated SNPs with cognitive performance. Three SNPs (rs1487441, rs7923609, and rs2721173) are significantly associated with cognitive performance after correction for multiple hypothesis testing. In an independent sample of older Americans (n = 8,652), we also show that a polygenic score derived from the education-associated SNPs is associated with memory and absence of dementia. Convergent evidence from a set of bioinformatics analyses implicates four specific genes (KNCMA1, NRXN1, POU2F3, and SCRT). All of these genes are associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory.


American Journal of Human Genetics | 2007

Genome Partitioning of Genetic Variation for Height from 11,214 Sibling Pairs

Peter M. Visscher; Stuart Macgregor; Beben Benyamin; Gu Zhu; Scott D. Gordon; Sarah E. Medland; William G. Hill; Jouke-Jan Hottenga; Gonneke Willemsen; Dorret I. Boomsma; Yao-Zhong Liu; Hong-Wen Deng; Grant W. Montgomery; Nicholas G. Martin

Height has been used for more than a century as a model by which to understand quantitative genetic variation in humans. We report that the entire genome appears to contribute to its additive genetic variance. We used genotypes and phenotypes of 11,214 sibling pairs from three countries to partition additive genetic variance across the genome. Using genome scans to estimate the proportion of the genomes of each chromosome from siblings that were identical by descent, we estimated the heritability of height contributed by each of the 22 autosomes and the X chromosome. We show that additive genetic variance is spread across multiple chromosomes and that at least six chromosomes (i.e., 3, 4, 8, 15, 17, and 18) are responsible for the observed variation. Indeed, the data are not inconsistent with a uniform spread of trait loci throughout the genome. Our estimate of the variance explained by a chromosome is correlated with the number of times suggestive or significant linkage with height has been reported for that chromosome. Variance due to dominance was not significant but was difficult to assess because of the high sampling correlation between additive and dominance components. Results were consistent with the absence of any large between-chromosome epistatic effects. Notwithstanding the proposed architecture of complex traits that involves widespread gene-gene and gene-environment interactions, our results suggest that variation in height in humans can be explained by many loci distributed over all autosomes, with an additive mode of gene action.


Diabetologia | 2007

Are there common genetic and environmental factors behind the endophenotypes associated with the metabolic syndrome

Beben Benyamin; Thorkild I. A. Sørensen; Karoline Schousboe; Mogens Fenger; Peter M. Visscher; Kirsten Ohm Kyvik

Aims/hypothesisThe cluster of obesity, insulin resistance, dyslipidaemia and hypertension, called the metabolic syndrome, has been suggested as a risk factor for cardiovascular disease and type 2 diabetes. The aim of the present study was to evaluate whether there are common genetic and environmental factors influencing this cluster in a general population of twin pairs.Materials and methodsA multivariate genetic analysis was performed on nine endophenotypes associated with the metabolic syndrome from 625 adult twin pairs of the GEMINAKAR study of the Danish Twin Registry.ResultsAll endophenotypes showed moderate to high heritability (0.31–0.69) and small common environmental variance (0.05–0.21). In general, genetic and phenotypic correlations between the endophenotypes were strong only within sets of physiologically similar endophenotypes, but weak to moderate for other pairs of endophenotypes. However, moderate correlations between insulin resistance indices and either obesity-related endophenotypes or triacylglycerol levels indicated that some common genetic backgrounds are shared between those components.Conclusions/interpretationWe demonstrated that, in a general population, the endophenotypes associated with the metabolic syndrome apparently do not share a substantial common genetic or familial environmental background.


WOS | 2015

Adiposity as a cause of cardiovascular disease: a Mendelian randomization study

Sara Haegg; Tove Fall; Alexander Ploner; Reedik Maegi; Krista Fischer; Harmen H. M. Draisma; Mart Kals; Paul S. de Vries; Abbas Dehghan; Sara M. Willems; Antti-Pekka Sarin; Kati Kristiansson; Marja-Liisa Nuotio; Aki S. Havulinna; Renée F.A.G. de Bruijn; M. Arfan Ikram; Maris Kuningas; Bruno H. Stricker; Oscar H. Franco; Beben Benyamin; Christian Gieger; Alistair S. Hall; Ville Huikari; Antti Jula; Marjo-Riitta Järvelin; Marika Kaakinen; Jaakko Kaprio; Michael Kobl; Massimo Mangino; Christopher P. Nelson

BACKGROUND Adiposity, as indicated by body mass index (BMI), has been associated with risk of cardiovascular diseases in epidemiological studies. We aimed to investigate if these associations are causal, using Mendelian randomization (MR) methods. METHODS The associations of BMI with cardiovascular outcomes [coronary heart disease (CHD), heart failure and ischaemic stroke], and associations of a genetic score (32 BMI single nucleotide polymorphisms) with BMI and cardiovascular outcomes were examined in up to 22,193 individuals with 3062 incident cardiovascular events from nine prospective follow-up studies within the ENGAGE consortium. We used random-effects meta-analysis in an MR framework to provide causal estimates of the effect of adiposity on cardiovascular outcomes. RESULTS There was a strong association between BMI and incident CHD (HR = 1.20 per SD-increase of BMI, 95% CI, 1.12-1.28, P = 1.9.10(-7)), heart failure (HR = 1.47, 95% CI, 1.35-1.60, P = 9.10(-19)) and ischaemic stroke (HR = 1.15, 95% CI, 1.06-1.24, P = 0.0008) in observational analyses. The genetic score was robustly associated with BMI (β = 0.030 SD-increase of BMI per additional allele, 95% CI, 0.028-0.033, P = 3.10(-107)). Analyses indicated a causal effect of adiposity on development of heart failure (HR = 1.93 per SD-increase of BMI, 95% CI, 1.12-3.30, P = 0.017) and ischaemic stroke (HR = 1.83, 95% CI, 1.05-3.20, P = 0.034). Additional cross-sectional analyses using both ENGAGE and CARDIoGRAMplusC4D data showed a causal effect of adiposity on CHD. CONCLUSIONS Using MR methods, we provide support for the hypothesis that adiposity causes CHD, heart failure and, previously not demonstrated, ischaemic stroke.


Pharmacogenomics | 2009

Family-based genome-wide association studies

Beben Benyamin; Peter M. Visscher; Allan F. McRae

In the last 2 years, the effort to identify genes affecting common diseases and complex traits has been accelerated through the use of genome-wide association studies (GWAS). The availability of existing large collections of linkage data paved the way for the use of family-based GWAS. Although most published GWAS used population-based designs, family-based designs have played an important role, particularly in replication stages. Family-based designs offer advantages in terms of quality control, the robustness to population stratification and the ability to perform genetic analyses that cannot be achieved using a sample of unrelated individuals, such as testing for the effect of imprinted genes on phenotypes, testing whether a genetic variant is inherited or de novo and combined linkage and association analysis.

Collaboration


Dive into the Beben Benyamin's collaboration.

Top Co-Authors

Avatar

Nicholas G. Martin

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Whitfield

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah E. Medland

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew C. Heath

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Pamela A. F. Madden

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Scott D. Gordon

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dale R. Nyholt

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge