Becky L. Hemmer
United States Environmental Protection Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Becky L. Hemmer.
Aquatic Toxicology | 2002
Michael J. Hemmer; Christopher J. Bowman; Becky L. Hemmer; Stephanie D. Friedman; Dragoslav Marcovich; Kevin J. Kroll; Nancy D. Denslow
Research was conducted to determine the kinetics of hepatic vitellogenin (VTG) mRNA regulation and plasma VTG accumulation and clearance in male sheepshead minnows (Cyprinodon variegatus) during and after cessation of exposure to either 17 beta-estradiol (E2) or para-nonylphenol (NP). Adult fish were continuously exposed to aqueous measured concentrations of 0.089 and 0.71 microg E2 per l, and 5.6 and 59.6 microg NP per l for 16 days using an intermittent flow-through dosing apparatus. Fish were sampled on days 8 and 16 of exposure followed by sampling at discrete intervals for up to 96 days post-exposure. At each interval five fish were randomly sampled from each concentration and hepatic VTG mRNA and serum VTG levels for individual fish determined by slot blot and direct enzyme-linked immunosorbent assay (ELISA), respectively. Exposure to E2 and NP resulted in a dose dependent increase in hepatic VTG mRNA and plasma VTG over the course of the 16-day exposure period. Mean plasma VTG levels at day 16 were >100 mg/ml for both high doses of E2 and NP, and >20 mg/ml for the low exposure treatments. Within 8 days post-exposure, hepatic VTG mRNA levels returned to baseline in both high and low E2 treatments but remained elevated 2-4 fold in the NP treatments. Due to a shortened sampling period, a clearance rate for plasma VTG in the 5.6 microg NP per l treatment could not determined. In the 0.089, 0.71 microg E2 per l, and 59.6 microg NP per l treatments, VTG levels began decreasing within 4 days after exposure cessation and exhibited an exponential rate of elimination from plasma. Clearance rates for 0.71 microg E2 per l and 59.6 microg NP per l were not significantly different (P=0.47), however, both demonstrated significantly higher rates of clearance (P<0.02) than observed in the 0.089 microg E2 per l treatment. Our results indicate that hepatic VTG mRNA rapidly diminishes after cessation of estrogenic exposure in sheepshead minnows, but plasma VTG clearance is concentration and time dependent and may be detected at measurable levels for months after initial exposure to an estrogenic compound.
Aquatic Toxicology | 2001
Leah M. Oliver; William S. Fisher; James T. Winstead; Becky L. Hemmer; Edward R. Long
Evidence linking bivalve defense responses with pollutant exposure is increasing. Contaminant effects on immune or defense responses could influence the ability of an organism to resist infectious disease. This study explored relationships between xenobiotic chemicals accumulated in oyster (Crassostrea virginica) tissue and various measures of putative oyster internal defense activities and physiological condition. Defense-related and physiological measurements were made on individual oysters collected from 22 sites at five Florida bays and pooled oyster tissue from each site was analyzed for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and certain pesticides. Chemical concentrations, physiological condition, and hemocyte and hemolymph characteristics varied across bays and among sites within a bay. Within-bay comparisons showed that sites with high oyster defense-related activities often had accompanying high tissue concentrations of one or more classes of xenobiotic chemicals. Correlation analysis performed across bays demonstrated significant positive relationships between most defense-related characteristics and at least one contaminant, including various PAH, PCB and trace metal analytes. In combination with other recent studies, these results strengthen the hypothesis that certain xenobiotic chemicals may be associated with elevated oyster hemocyte activities, even though the ultimate influence on disease resistance remains unknown.
Environmental Toxicology and Chemistry | 2009
Sandy Raimondo; Becky L. Hemmer; Larry R. Goodman; Geraldine M. Cripe
The evaluation of multigeneration, population-level impacts is particularly important in the risk assessment of endocrine-disrupting compounds, because adverse effects may not be evident during the first generation of exposure. Population models were developed for the sheepshead minnow (Cyprinodon variegatus) exposed to 17β-estradiol (E2) for two complete generations (F1 and F2) to determine population-level effects of multigenerational exposure to a model estrogen. Stage-structured matrix models were used to determine interactions between treatment and the number of generations exposed. Reproduction was significantly reduced in both the 0.08 and 0.2 μg E2/L treatments in both generations, and embryo and larval stages experienced reduced survival at 0.2 μg/L in the second generation only. However, increased female to male sex ratio in these treatments compensated for the loss in reproductive output, and significant population-level effects only occurred in the 0.2 μg E2/L treatment of the F2 population. The F2 population in the 0.2 μg E2/L treatment also had an altered, stable stage distribution relative to the control population of both generations and the Fl population in the 0.2 μg E2/L treatment, resulting in additional population-level effects. These results demonstrate that continued exposure to E2 had compounding effects on sheepshead minnow populations and that long-term exposures may be necessary to understand the risk that exposures to environmental estrogens pose to native populations. Although population-level effects did not occur in the Fl generation, a risk decision based on Fl organism-level effects would be protective of the population exposed for two generations.
Environmental Toxicology and Chemistry | 2009
Geraldine M. Cripe; Becky L. Hemmer; Larry R. Goodman; John W. Fournie; Sandy Raimondo; Joann C. Vennari; Rodney L. Danner; Kent Smith; Blaze R. Manfredonia; Dannielle H. Kulaw; Michael J. Hemmer
A 280-d study examined the effects of 17β-estradiol (E2) on reproduction and development of the sheepshead minnow (Cyprinodon variegatus) exposed from the parental (F0) through three subsequent (F1, F2, and F3) generations and evaluated the need for multigenerational assessments of the risks of endocrine-disrupting chemicals. This first three-generation study exposed adult F0 and F1 fish to measured concentrations of 0.01, 0.04, 0.08, 0.2, and 0.3 μg E2/L; the F2 and F3 generations were exposed to 0.2 μg E2/L or less. The cumulative 21-d production of normal embryos was significantly reduced in the F0 generation at 0.3 μg E2/L and in the F1 and F2 generations at 0.08 μg E2/L or more. The daily reproductive rate was significantly reduced in all three generations at 0.08 μg E2/L or more during spawning days 8 to 14 and 15 to 21. The proportion of infertile eggs from F1 fish was significantly increased above that of the solvent controls at 0.04 and 0.2 μg E2/L and from F2 fish at 0.04 μg E2/L or more. Changes in liver, kidney, and gonadal tissues were seen in the F0 and F1 generations exposed to 0.2 μg E2/L or more. The female gonadosomatic index was significantly decreased at 0.3 μg E2/L in the F0 and F1 generations. Estradiol affected the hepatosomatic index only in female F1 fish, but not in a dose-dependent manner. All F1 fish in 0.3 μg E2/L appeared to be phenotypically female. Our results indicate that life-cycle exposure to E2 significantly decreased embryo production by F1 and F2 fish at concentrations lower than those affecting the F0 generation, and they emphasize the importance of evaluating the impact of an estrogenic chemical on reproduction through a minimum of two (F0 and F1) generations.
Environmental Toxicology and Chemistry | 2010
Geraldine M. Cripe; Becky L. Hemmer; Sandy Raimondo; Larry R. Goodman; Dannielle H. Kulaw
Estimating long-term effects of endocrine-disrupting chemicals on a species is important to assessing the overall risk to the populations. The present study reports the results of a 42-week exposure of estuarine sheepshead minnows (Cyprinodon variegatus) to the androgen, 17beta-trenbolone (Tb) conducted to determine if partial-(F0) or single-generation (F1) fish exposures identify multigenerational (F0-F3) effects of androgens on fish. Adult F0 fish were exposed to 0.007, 0.027, 0.13, 0.87,and 4.1 microg Tb/L, the F1 generation to < or =0.87 microg Tb/L, the F2 fish to < or =0.13 microg Tb/L, and the F3 fish to < or =0.027 microg Tb/L. The highest concentrations with reproducing populations at the end of the F0, F1, and F2 generations were 4.1, 0.87, and 0.027 microg Tb/L, respectively. Reproduction in the F0, F1, and F2 generations was significantly reduced at 0.87, 0.027, and 0.027 microg Tb/L, respectively. Fish were significantly masculinized in the F1 generation exposed to 0.13 microg Tb/L or greater. Female plasma vitellogenin was significantly reduced in F0 fish exposed to > or =0.87 microg Tb/L. Gonadosomatic indices of the F0 and F1 generations were significantly increased at 0.87 and 0.13 microg Tb/L in the F0 and F1 generation, respectively, and were accompanied by ovarian histological changes. Reproduction was the most consistently sensitive measure of androgen effects and, after a life-cycle exposure, the daily reproductive rate predicted concentrations affecting successive generations. The present study provides evidence that a multiple generation exposure of fish to some endocrine-disrupting chemicals can result in developmental and reproductive changes that have a much greater impact on the success of a species than was indicated from shorter term exposures.
Aquatic Toxicology | 2008
Michael J. Hemmer; Geraldine M. Cripe; Becky L. Hemmer; Larry R. Goodman; Kimberly A. Salinas; John W. Fournie; Calvin C. Walker
Protein profiling can be used for detection of biomarkers that can be applied diagnostically to screen chemicals for endocrine modifying activity. In previous studies, mass spectral analysis revealed four peptides (2950.5, 2972.5, 3003.4, 3025.5m/z) in the plasma of estrogen agonist-treated male and gravid female sheepshead minnows (Cyprinodon variegatus, SHM), which served as distinct estrogenic biomarkers. In this study, a 21-day reproductive assay with adult SHM was conducted to investigate possible dose-related effects of the synthetic androgen, 17beta-trenbolone, on expression of these four estrogen-responsive peptides. In addition, the response of the peptide biomarkers were compared to traditional reproductive endpoints of fecundity, histopathology, secondary sex characteristics, length, weight, hepatosomatic index, female gonadosomatic index and plasma vitellogenin (VTG) levels. Fish were continuously exposed to 0.005, 0.05, and 5.0 microg/l, a solvent control (triethylene glycol, TEG), and a seawater control (SW) using an intermittent flow-through dosing system. Plasma was analyzed for the presence of the four peptide biomarkers by MALDI-TOF MS and VTG protein by quantitative ELISA. Male fish from the trenbolone treatments and controls showed no expression of the four peptide biomarkers or measurable levels of VTG. The estrogen-responsive biomarkers and plasma VTG were constitutively expressed in females from the SW, TEG, 0.005 and 0.05 microg/l exposures. All four peptide biomarkers were significantly reduced (p<0.0002 to p<0.005) at the 5.0 microg/l treatment level which corresponded with significant reductions in fecundity and changes in ovarian morphology. A distinct but non-significant reduction in VTG was also observed in female fish from the 5.0 microg/l treatment. Results of this study suggest application of these estrogen-responsive protein biomarkers may be a cost effective alternative to fecundity measures which are labor intensive and expensive to conduct.
Ecotoxicology and Environmental Safety | 2014
Sandy Raimondo; Crystal R. Jackson; Julie Krzykwa; Becky L. Hemmer; Jill A. Awkerman; Mace G. Barron
Embryonic exposures to the components of petroleum, including polycyclic aromatic hydrocarbons (PAHs), cause a characteristic suite of developmental defects and cardiotoxicity in a variety of fish species. We exposed zebrafish embryos to reference sediment mixed with laboratory weathered South Louisiana crude oil and to sediment collected from an oiled site in Barataria Bay, Louisiana in December 2010. Laboratory oiled sediment exposures caused a reproducible set of developmental malformations in zebrafish embryos including yolk sac and pericardial edema, craniofacial and spinal defects, and tissue degeneration. Dose-response studies with spiked sediment showed that total polycyclic aromatic hydrocarbons (tPAH) concentrations of 27mg tPAH/kg (dry weight normalized to 1 percent organic carbon [1 percent OC]) caused a significant increase in defects, and concentrations above 78mg tPAH/kg 1 percent OC caused nearly complete embryo mortality. No toxicity was observed in Barataria sediment with 2mg tPAH/kg 1 percent OC. Laboratory aging of spiked sediment at 4°C resulted in a nearly 10-fold decrease in sensitivity over a 40-day period. This study demonstrates oiled sediment as an exposure pathway to fish with dose-dependent effects on embryogenesis that are consistent with PAH mechanisms of developmental toxicity. The results have implications for effects on estuarine fish from oiled coastal areas during the Deepwater Horizon spill.
Environmental Toxicology | 2016
Sandy Raimondo; Becky L. Hemmer; Crystal R. Lilavois; Julie Krzykwa; Alex Almario; Jill A. Awkerman; Mace G. Barron
Determining the long‐term effects of crude oil exposure is critical for ascertaining population‐level ecological risks of spill events. A 19‐week complete life‐cycle experiment was conducted with the estuarine sheepshead minnow (Cyprinodon variegatus) exposed to reference (uncontaminated) sediment spiked with laboratory weathered South Louisiana crude (SLC) oil at five concentrations as well as one unspiked sediment control and one seawater (no sediment) control. Newly hatched larvae were exposed to the oiled sediments at measured concentrations of < 1 (sediment control), 50, 103, 193, 347, and 711 mg total polyaromatic hydrocarbons (tPAH)/kg dry sediment. Juveniles were exposed through the reproductively active adult phase at measured concentrations of <1 (sediment control), 52, 109, 199, 358, and 751 mg tPAH/kg sediment. Throughout the exposure, fish were assessed for growth, survival, and reproduction. Resulting F1 embryos were then collected, incubated, and hatched in clean water to determine if parental full life‐cycle exposure to oiled sediment produced trans‐generational effects. Larvae experienced significantly reduced standard length (5–13% reduction) and wet weight (13–35% reduction) at concentrations at and above 50 and 103 mg tPAH/kg sediment, respectively. At 92 and 132 days post hatch (dph), standard length was reduced (7–13% reduction) at 199 and 109 mg tPAH/kg dry sediment, respectively, and wet weight for both time periods was reduced at concentrations at and above 109 mg tPAH/kg dry sediment (21–38% reduction). A significant reduction (51–65%) in F0 fecundity occurred at the two highest test concentrations, but no difference was observed in F1 embryo survival. This study is the first to report the effects of chronic laboratory exposure to oiled sediment, and will assist the development of population models for evaluating risk to benthic spawning fish species exposed to oiled sediments.
Ecological Applications | 2016
Jill A. Awkerman; Becky L. Hemmer; Alex Almario; Crystal R. Lilavois; Mace G. Barron; Sandy Raimondo
Evaluating long-term contaminant effects on wildlife populations depends on spatial information about habitat quality, heterogeneity in contaminant exposure, and sensitivities and distributions of species integrated into a systems modeling approach. Rarely is this information readily available, making it difficult to determine the applicability of realistic models to quantify population-level risks. To evaluate the trade-offs between data demands and increased specificity of spatially explicit models for population-level risk assessments, we developed a model for a standard toxicity test species, the sheepshead minnow (Cyprinodon variegatus), exposed to oil contamination following the Deepwater Horizon oil spill and compared the output with various levels of model complexity to a standard risk quotient approach. The model uses habitat and fish occupancy data collected over five sampling periods throughout 2008-2010 in Pensacola and Choctawhatchee Bays, Florida, USA, to predict species distribution, field-collected and publically available data on oil distribution and concentration, and chronic toxicity data from laboratory assays applied to a matrix population model. The habitat suitability model established distribution of fish within Barataria Bay, Louisiana, USA, and the population model projected the dynamics of the species in the study area over a 5-yr period (October 2009-September 2014). Vital rates were modified according to estimated contaminant concentrations to simulate oil exposure effects. To evaluate the differences in levels of model complexity, simulations varied from temporally and spatially explicit, including seasonal variation and location-specific oiling, to simple interpretations of a risk quotient derived for the study area. The results of this study indicate that species distribution, as well as spatially and temporally variable contaminant concentrations, can provide a more ecologically relevant evaluation of species recovery from catastrophic environmental impacts but might not be cost-effective or efficient for rapid assessment needs.
Environmental Toxicology and Chemistry | 2001
Michael J. Hemmer; Becky L. Hemmer; Christopher J. Bowman; Kevin J. Kroll; Leroy C. Folmar; Dragoslav Marcovich; Marilynn D. Hoglund; Nancy D. Denslow