Becky L. Williams
Utah State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Becky L. Williams.
Journal of Chemical Ecology | 2005
Edmund D. Brodie; Chris R. Feldman; Charles T. Hanifin; Jeffrey E. Motychak; Daniel G. Mulcahy; Becky L. Williams
Parallel “arms races” involving the same or similar phenotypic interfaces allow inference about selective forces driving coevolution, as well as the importance of phylogenetic and phenotypic constraints in coevolution. Here, we report the existence of apparent parallel arms races between species pairs of garter snakes and their toxic newt prey that indicate independent evolutionary origins of a key phenotype in the interface. In at least one area of sympatry, the aquatic garter snake, Thamnophis couchii, has evolved elevated resistance to the neurotoxin tetrodotoxin (TTX), present in the newt Taricha torosa. Previous studies have shown that a distantly related garter snake, Thamnophis sirtalis, has coevolved with another newt species that possesses TTX, Taricha granulosa. Patterns of within population variation and phenotypic tradeoffs between TTX resistance and sprint speed suggest that the mechanism of resistance is similar in both species of snake, yet phylogenetic evidence indicates the independent origins of elevated resistance to TTX.
Marine Drugs | 2010
Becky L. Williams
The behavioral and chemical ecology of marine organisms that possess tetrodotoxin (TTX) has not been comprehensively reviewed in one work to date. The evidence for TTX as an antipredator defense, as venom, as a sex pheromone, and as an attractant for TTX-sequestering organisms is discussed. Little is known about the adaptive value of TTX in microbial producers; thus, I focus on what is known about metazoans that are purported to accumulate TTX through diet or symbioses. Much of what has been proposed is inferred based on the anatomical distribution of TTX. Direct empirical tests of these hypotheses are absent in most cases.
Journal of Chemical Ecology | 2004
Becky L. Williams; Edmund D. Brodie
The Common Garter Snake (Thamnophis sirtalis) preys upon the Rough-skinned Newt (Taricha granulosa), which contains the neurotoxin tetrodotoxin (TTX) in the skin. TTX is toxic, large quantities are present in a newt, and highly resistant snakes have the ability to ingest multiple newts; subsequently snakes harbor significant amounts of active toxin in their own tissues after consuming a newt. Snakes harbor TTX in the liver for 1 mo or more after consuming just one newt, and at least 7 wk after consuming a diet of newts. Three weeks after eating one newt, snakes contained an average of 42 μg of TTX in the liver. This amount could severely incapacitate or kill avian predators, and mammalian predators may be negatively affected as well.
Herpetologica | 2003
Becky L. Williams; Edmund D. Brodie
Deadly toxins and resistance to them are an evolutionary enigma. Selection for increased resistance does not occur if predators do not survive encounters with toxic prey. Similarly, deadly toxins are of no advantage to individual prey if it dies delivering the toxins. For individual selection to drive the coevolutionary arms race between resistant predators and lethal prey, the survivorship of individual predators must covary with their resistance. The extreme toxicity of the rough skinned newt Taricha granulosa appears to have coevolved with resistance in its predator, the common garter snake Thamnophis sirtalis, yet the mechanism by which individual selection can operate has been unclear in this and other lethal prey-predator systems. We show that individual snakes assess their own resistance relative to newt toxicity and reject prey too toxic to consume. Rejected newts all survived attacks and attempted ingestion by snakes that sometimes lasted over 50 min. Behavioral moderation of toxin exposure by snakes provides the association between individual resistance and fitness necessary for coevolution of lethal toxins and resistance to occur.
Biological Procedures Online | 2012
Amber N. Stokes; Becky L. Williams; Susannah S. French
Quantifying tetrodotoxin (TTX) has been a challenge in both ecological and medical research due to the cost, time and training required of most quantification techniques. Here we present a modified Competitive Inhibition Enzymatic Immunoassay for the quantification of TTX, and to aid researchers in the optimization of this technique for widespread use with a high degree of accuracy and repeatability.
Journal of Chemical Ecology | 2011
Becky L. Williams; Charles T. Hanifin; Edmund D. Brodie; Roy L. Caldwell
Many organisms provision offspring with antipredator chemicals. Adult blue-ringed octopuses (Hapalochlaena spp.) harbor tetrodotoxin (TTX), which may be produced by symbiotic bacteria. Regardless of the ultimate source, we find that females invest TTX into offspring and offspring TTX levels are significantly correlated with female TTX levels. Because diversion of TTX to offspring begins during the earliest stages of egg formation, when females are still actively foraging and looking for mates, females may face an evolutionary tradeoff between provisioning larger stores of TTX in eggs and retaining that TTX for their own defense and offense (venom). Given that total TTX levels appear to increase during development and that female TTX levels correlate with those of offspring, investment may be an active adaptive process. Even after eggs have been laid, TTX levels continue to increase, suggesting that offspring or their symbionts begin producing TTX independently. The maternal investment of TTX in offspring of Hapalochlaena spp. represents a rare examination of chemical defenses, excepting ink, in cephalopods.
Toxicon | 2009
Becky L. Williams; Roy L. Caldwell
In-depth studies on the intra-organismal distribution of toxin may yield valuable clues about potential ecological functions. The distribution of tetrodotoxin (TTX) in previously unexamined tissues of two species of blue-ringed octopuses, wild-caught Hapalochlaena fasciata and Hapalochlaena lunulata from the aquarium industry, was surveyed. Tissues from each individual were examined separately. Tetrodotoxin was detected in posterior salivary gland (PSG), arm, mantle, anterior salivary glands, digestive gland, testes contents, brachial heart, nephridia, gill, and oviducal gland of H. fasciata. By contrast TTX was found only in the PSG, mantle tissue, and ink of H. lunulata. The highest concentrations of TTX resided in the PSG of both species; however, the arms and mantle contained the greatest absolute amounts of TTX. Minimum total amounts of TTX per octopus ranged from 60 to 405 microg in H. fasciata and from 0 to 174 microg in H. lunulata and correlated well with the amounts in the PSG. Transport of TTX in the blood is loosely suggested by the presence of the toxin in blood-rich organs such as the gill and brachial hearts. The distributional data also suggest both offensive and defensive functions of TTX.
Toxicon | 2012
Becky L. Williams; Michael R. Stark; Roy L. Caldwell
Blue-ringed octopuses (genus Hapalochlaena) possess the potent neurotoxin tetrodotoxin (TTX). We examined the microdistribution of TTX in ten tissues of Hapalochlaena lunulata and Hapalochlaena fasciata by immunolabeling for fluorescent light microscopy (FLM). We visualized TTX throughout the posterior salivary gland, but the toxin was concentrated in cells lining the secretory tubules within the gland. Tetrodotoxin was present just beneath the epidermis of the integument (mantle and arms) and also concentrated in channels running through the dermis. This was suggestive of a TTX transport mechanism in the blood of the octopus, which would also explain the presence of the toxin in the blood-rich brachial hearts, gills, nephridia, and highly vascularized Needhams sac (testes contents). We also present the first report of TTX in any cephalopod outside of the genus Hapalochlaena. A specimen of Octopus bocki from French Polynesia contained a small amount of TTX in the digestive gland.
Chemoecology | 2010
Becky L. Williams; Charles T. Hanifin; Edmund D. Brodie
Chemoecology | 2012
Becky L. Williams; Charles T. Hanifin; Edmund D. Brodie