Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beena Akolkar is active.

Publication


Featured researches published by Beena Akolkar.


Nature Genetics | 2009

Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes

Jeffrey C. Barrett; David G. Clayton; Patrick Concannon; Beena Akolkar; Jason D. Cooper; Henry A. Erlich; Cécile Julier; Grant Morahan; Jørn Nerup; Concepcion Nierras; Vincent Plagnol; Flemming Pociot; Helen Schuilenburg; Deborah J. Smyth; Helen Stevens; John A. Todd; Neil M Walker; Stephen S. Rich

Type 1 diabetes (T1D) is a common autoimmune disorder that arises from the action of multiple genetic and environmental risk factors. We report the findings of a genome-wide association study of T1D, combined in a meta-analysis with two previously published studies. The total sample set included 7,514 cases and 9,045 reference samples. Forty-one distinct genomic locations provided evidence for association with T1D in the meta-analysis (P < 10−6). After excluding previously reported associations, we further tested 27 regions in an independent set of 4,267 cases, 4,463 controls and 2,319 affected sib-pair (ASP) families. Of these, 18 regions were replicated (P < 0.01; overall P < 5 × 10−8) and 4 additional regions provided nominal evidence of replication (P < 0.05). The many new candidate genes suggested by these results include IL10, IL19, IL20, GLIS3, CD69 and IL27.


Diabetes | 2010

Genetics of Type 1 Diabetes: What's Next?

Flemming Pociot; Beena Akolkar; Patrick Concannon; Henry A. Erlich; Cécile Julier; Grant Morahan; Concepcion Nierras; John A. Todd; Stephen S. Rich; Jørn Nerup

The discovery of the association between HLA in the major histocompatibility complex (MHC) on chromosome 6p21 with type 1 diabetes, but not with type 2 diabetes, suggested that these disease entities were of different genetic background and pathogenesis. The discovery that some individuals with diabetes had autoantibodies in their blood provided additional evidence that type 1 diabetes had an autoimmune origin. Recently, increasing knowledge of the genome, coupled with rapidly improving genotyping technology and availability of increasingly large numbers of samples, has enabled statistically robust, systematic, genome-wide examinations for discovery of loci contributing to type 1 diabetes susceptibility, including within the MHC itself. Currently, there are over 50 non-HLA regions that significantly affect the risk for type 1 diabetes (http://www.t1dbase.org). Many of these regions contain interesting, but previously unrecognized, candidate genes. A few regions contain genes of unknown function or no known annotated genes, suggesting roles for long-distance gene regulatory effects, noncoding RNAs, or unknown mechanisms. Against a background of ever-improving knowledge of the genome, particularly its transcriptional regulation, and with massive advances in sequencing, specific genes, rather than regions that impinge upon type 1 diabetes risk, will be identified soon. Here we discuss follow-up strategies for genome-wide association (GWA) studies, causality of candidate genes, and genetic association in a bioinformatics approach with the anticipation that this knowledge will permit identification of the earliest events in type 1 diabetes etiology that could be targets for intervention or biomarkers for monitoring the effects and outcomes of potential therapeutic agents. The International Type 1 Diabetes Genetics Consortium (T1DGC) has established significant resources for the study of genetics of type 1 diabetes. These resources are available to the research community and provide a basis for future discovery in the transition from gene mapping to discovery of disease mechanisms. The T1DGC (http://www.t1dgc.org) is an …


Pediatric Diabetes | 2008

The Environmental Determinants of Diabetes in the Young (TEDDY) Study

Marian Rewers; Jin Xiong She; Anette-G. Ziegler; Olli Simell; Åke Lernmark; William Hagopian; Jeffrey P. Krischer; Beena Akolkar

The etiology of type 1 diabetes (T1D) remains unknown, but a growing body of evidence points to infectious agents and/or components of early childhood diet. The National Institutes of Health has established the TEDDY Study consortium of six clinical centers in the United States and Europe and a data coordinating center to identify environmental factors predisposing to, or protective against, islet autoimmunity and T1D. From 2004–2009, TEDDY will screen more than 360,000 newborns from both the general population and families already affected by T1D to identify an estimated 17,804 children with high‐risk HLA‐DR,DQ genotypes. Of those, 7,801 (788 first‐degree relatives and 7,013 newborns with no family history of T1D) will be enrolled in prospective follow‐up beginning before the age of 4.5 months. As of May 2008, TEDDY has screened more than 250,000 newborns and enrolled nearly 5,000 infants—approximately 70% of the final cohort. Participants are seen every 3 months up to 4 years of age, with subsequent visits every 6 months until the subject is 15 years of age. Blood samples are collected at each visit for detection of candidate infectious agents and nutritional biomarkers; monthly stool samples are collected for infectious agents. These samples are saved in a central repository. Primary endpoints include (1) appearance of one or more islet autoantibodies (to insulin, GAD65 or IA‐2) confirmed at two consecutive visits; (2) development of T1D. By age 15, an estimated 800 children will develop islet autoimmunity and 400 will progress to T1D; 67 and 27 children have already reached these endpoints.


Pediatric Diabetes | 2011

The Environmental Determinants of Diabetes in the Young (TEDDY): genetic criteria and international diabetes risk screening of 421 000 infants.

William Hagopian; Henry A. Erlich; Åke Lernmark; Marian Rewers; Anette-G. Ziegler; Olli Simell; Beena Akolkar; Robert F. Vogt; Alan Blair; Jorma Ilonen; Jeffrey P. Krischer; Jin Xiong She

Hagopian WA, Erlich H, Lernmark Å, Rewers M, Ziegler AG, Simell O, Akolkar B, Vogt Jr R, Blair A, Ilonen J, Krischer J, She J, and the TEDDY Study Group. The Environmental Determinants of Diabetes in the Young (TEDDY): genetic criteria and international diabetes risk screening of 421 000 infants.


The Journal of Clinical Endocrinology and Metabolism | 2010

Harmonization of glutamic acid decarboxylase and islet antigen-2 autoantibody assays for National Institute of Diabetes and Digestive and Kidney Diseases Consortia

Ezio Bonifacio; Liping Yu; Alastair K. Williams; George S. Eisenbarth; Polly J. Bingley; Santica M. Marcovina; Kerstin Adler; Anette-G. Ziegler; Patricia W. Mueller; Desmond A. Schatz; Jeffrey P. Krischer; Michael W. Steffes; Beena Akolkar

BACKGROUND/RATIONALE Autoantibodies to islet antigen-2 (IA-2A) and glutamic acid decarboxylase (GADA) are markers for diagnosis, screening, and measuring outcomes in National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) consortia studies. A harmonization program was established to increase comparability of results within and among these studies. METHODS Large volumes of six working calibrators were prepared from pooled sera with GADA 4.8-493 World Health Organization (WHO) units/ml and IA-2A 2-235 WHO units/ml. Harmonized assay protocols for IA-2A and GADA using (35)S-methionine-labelled in vitro transcribed and translated antigens were developed based on methods in use in three NIDDK laboratories. Antibody thresholds were defined using sera from patients with recent onset type 1 diabetes and healthy controls. To evaluate the impact of the harmonized assay protocol on concordance of IA-2A and GADA results, two laboratories retested stored TEDDY study sera using the harmonized assays. RESULTS The harmonized assays gave comparable but not identical results in the three laboratories. For IA-2A, using a common threshold of 5 DK units/ml, 549 of 550 control and patient samples were concordantly scored as positive or negative, specificity was greater than 99% with sensitivity 64% in all laboratories. For GADA, using thresholds equivalent to the 97th percentile of 974 control samples in each laboratory, 1051 (97.9%) of 1074 samples were concordant. On the retested TEDDY samples, discordance decreased from 4 to 1.8% for IA-2A (n = 604 samples; P = 0.02) and from 15.4 to 2.7% for GADA (n = 515 samples; P < 0.0001). CONCLUSION Harmonization of GADA and IA-2A is feasible using large volume working calibrators and common protocols and is an effective approach to ensure consistency in autoantibody measurements.


Diabetes | 2008

A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3.

Patrick Concannon; Suna Onengut-Gumuscu; John A. Todd; Deborah J. Smyth; Flemming Pociot; Regine Bergholdt; Beena Akolkar; Henry A. Erlich; Joan E. Hilner; Cécile Julier; Grant Morahan; Jørn Nerup; Concepcion Nierras; Wei-Min Chen; Stephen S. Rich

OBJECTIVE— The Type 1 Diabetes Genetics Consortium (T1DGC) has assembled and genotyped a large collection of multiplex families for the purpose of mapping genomic regions linked to type 1 diabetes. In the current study, we tested for evidence of loci associated with type 1 diabetes utilizing genome-wide linkage scan data and family-based association methods. RESEARCH DESIGN AND METHODS— A total of 2,496 multiplex families with type 1 diabetes were genotyped with a panel of 6,090 single nucleotide polymorphisms (SNPs). Evidence of association to disease was evaluated by the pedigree disequilibrium test. Significant results were followed up by genotyping and analyses in two independent sets of samples: 2,214 parent-affected child trio families and a panel of 7,721 case and 9,679 control subjects. RESULTS— Three of the SNPs most strongly associated with type 1 diabetes localized to previously identified type 1 diabetes risk loci: INS, IFIH1, and KIAA0350. A fourth strongly associated SNP, rs876498 (P = 1.0 × 10−4), occurred in the sixth intron of the UBASH3A locus at chromosome 21q22.3. Support for this disease association was obtained in two additional independent sample sets: families with type 1 diabetes (odds ratio [OR] 1.06 [95% CI 1.00–1.11]; P = 0.023) and case and control subjects (1.14 [1.09–1.19]; P = 7.5 × 10−8). CONCLUSIONS— The T1DGC 6K SNP scan and follow-up studies reported here confirm previously reported type 1 diabetes associations at INS, IFIH1, and KIAA0350 and identify an additional disease association on chromosome 21q22.3 in the UBASH3A locus (OR 1.10 [95% CI 1.07–1.13]; P = 4.4 × 10−12). This gene and its flanking regions are now validated targets for further resequencing, genotyping, and functional studies in type 1 diabetes.


Annals of the New York Academy of Sciences | 2006

TEDDY- The environmental determinants of diabetes in the young - An observational clinical trial

William Hagopian; Åke Lernmark; Marian Rewers; Olli Simell; Jin Xiong She; Anette-G. Ziegler; Jeffrey P. Krischer; Beena Akolkar

Abstract:  The aim of the TEDDY study is to identify infectious agents, dietary factors, or other environmental agents, including psychosocial factors, which may either trigger islet autoimmunity, type 1 diabetes mellitus (T1DM), or both. The study has two end points: (a) appearance of islet autoantibodies and (b) clinical diagnosis of T1DM. Six clinical centers screen newborns for high‐risk HLA genotypes. As of December 2005 a total of 54,470 newborns have been screened. High‐risk HLA genotypes among 53,560 general population (GP) infants were 2576 (4.8%) and among 910 newborns with a first‐degree relative (FDR) were 194 (21%). A total of 1061 children have been enrolled. The initial enrollment results demonstrate the feasibility of this complex and demanding a prospective study.


Diabetes | 2009

Genome-wide scan for linkage to type 1 diabetes in 2,496 multiplex families from the Type 1 Diabetes Genetics Consortium.

Patrick Concannon; Wei-Min Chen; Cécile Julier; Grant Morahan; Beena Akolkar; Henry A. Erlich; Joan E. Hilner; Jørn Nerup; Concepcion Nierras; Flemming Pociot; John A. Todd; Stephen S. Rich

OBJECTIVE Type 1 diabetes arises from the actions of multiple genetic and environmental risk factors. Considerable success at identifying common genetic variants that contribute to type 1 diabetes risk has come from genetic association (primarily case-control) studies. However, such studies have limited power to detect genes containing multiple rare variants that contribute significantly to disease risk. RESEARCH DESIGN AND METHODS The Type 1 Diabetes Genetics Consortium (T1DGC) has assembled a collection of 2,496 multiplex type 1 diabetic families from nine geographical regions containing 2,658 affected sib-pairs (ASPs). We describe the results of a genome-wide scan for linkage to type 1 diabetes in the T1DGC family collection. RESULTS Significant evidence of linkage to type 1 diabetes was confirmed at the HLA region on chromosome 6p21.3 (logarithm of odds [LOD] = 213.2). There was further evidence of linkage to type 1 diabetes on 6q that could not be accounted for by the major linkage signal at the HLA class II loci on chromosome 6p21. Suggestive evidence of linkage (LOD ≥2.2) was observed near CTLA4 on chromosome 2q32.3 (LOD = 3.28) and near INS (LOD = 3.16) on chromosome 11p15.5. Some evidence for linkage was also detected at two regions on chromosome 19 (LOD = 2.84 and 2.54). CONCLUSIONS Five non–HLA chromosome regions showed some evidence of linkage to type 1 diabetes. A number of previously proposed type 1 diabetes susceptibility loci, based on smaller ASP numbers, showed limited or no evidence of linkage to disease. Low-frequency susceptibility variants or clusters of loci with common alleles could contribute to the linkage signals observed.


JAMA Pediatrics | 2016

Association of Early Exposure of Probiotics and Islet Autoimmunity in the TEDDY Study

Ulla Uusitalo; Xiang Liu; Jimin Yang; Carin Andrén Aronsson; Sandra Hummel; Martha Butterworth; Åke Lernmark; Marian Rewers; William Hagopian; Jin Xiong She; Olli Simell; Jorma Toppari; Anette-G. Ziegler; Beena Akolkar; Jeffrey P. Krischer; Jill M. Norris; Suvi Virtanen

IMPORTANCE Probiotics have been hypothesized to affect immunologic responses to environmental exposures by supporting healthy gut microbiota and could therefore theoretically be used to prevent the development of type 1 diabetes mellitus (T1DM)-associated islet autoimmunity. OBJECTIVE To examine the association between supplemental probiotic use during the first year of life and islet autoimmunity among children at increased genetic risk of T1DM. DESIGN, SETTING, AND PARTICIPANTS In this ongoing prospective cohort study that started September 1, 2004, children from 6 clinical centers, 3 in the United States (Colorado, Georgia/Florida, and Washington) and 3 in Europe (Finland, Germany, and Sweden), were followed up for T1DM-related autoantibodies. Blood samples were collected every 3 months between 3 and 48 months of age and every 6 months thereafter to determine persistent islet autoimmunity. Details of infant feeding, including probiotic supplementation and infant formula use, were monitored from birth using questionnaires and diaries. We applied time-to-event analysis to study the association between probiotic use and islet autoimmunity, stratifying by country and adjusting for family history of type 1 diabetes, HLA-DR-DQ genotypes, sex, birth order, mode of delivery, exclusive breastfeeding, birth year, childs antibiotic use, and diarrheal history, as well as maternal age, probiotic use, and smoking. Altogether 8676 infants with an eligible genotype were enrolled in the follow-up study before the age of 4 months. The final sample consisted of 7473 children with the age range of 4 to 10 years (as of October 31, 2014). EXPOSURES Early intake of probiotics. MAIN OUTCOMES AND MEASURES Islet autoimmunity revealed by specific islet autoantibodies. RESULTS Early probiotic supplementation (at the age of 0-27 days) was associated with a decreased risk of islet autoimmunity when compared with probiotic supplementation after 27 days or no probiotic supplementation (hazard ratio [HR], 0.66; 95% CI, 0.46-0.94). The association was accounted for by children with the DR3/4 genotype (HR, 0.40; 95% CI, 0.21-0.74) and was absent among other genotypes (HR, 0.97; 95% CI, 0.62-1.54). CONCLUSIONS AND RELEVANCE Early probiotic supplementation may reduce the risk of islet autoimmunity in children at the highest genetic risk of T1DM. The result needs to be confirmed in further studies before any recommendation of probiotics use is made.


Journal of Autoimmunity | 2011

Accelerated progression from islet autoimmunity to diabetes is causing the escalating incidence of type 1 diabetes in young children.

Anette-G. Ziegler; Maren Pflueger; Christiane Winkler; Peter Achenbach; Beena Akolkar; Jeffrey P. Krischer; Ezio Bonifacio

The incidence of type 1 diabetes is rising worldwide, particularly in young children. Since type 1 diabetes is preceded by autoimmunity to islet antigens, there must be a consequent increase in the incidence of islet autoimmunity in young children or a more rapid rate of progression to diabetes once islet autoimmunity initiates. This study was to determine whether the incidence of islet autoimmunity or the rate of progression from autoimmunity to diabetes onset has changed over a 20-year period in children genetically predisposed to type 1 diabetes. Between 1989 and 2010, children who were first-degree relatives of patients with type 1 diabetes and who were born in Germany were prospectively followed from birth without intervention. A total of 324 children (BABYDIAB study) born between 1989 and 2000 and 216 children (TEDDY study) born between 2004 and 2010 with matched HLA genotypes were recruited before age 3 months and included for analysis. Children were followed for the development of autoantibodies to insulin, GAD, and IA-2, and for progression to diabetes. The cumulative frequency of diabetes by age 4 years was 2.5% (95% CI 0.8-4.2%) in BABYDIAB children and 6.2% (95% CI 2.3-10.1%) in TEDDY children (p = 0.03). The cumulative frequency of islet autoantibodies by age 4 years was similar in the children from both studies (11.3% vs 13.9%). Progression to diabetes from the development of islet autoantibodies was markedly increased in autoantibody-positive children from the more recently recruited TEDDY cohort (50% progression within 85.2 months for BABYDIAB children vs 9.6 months for TEDDY children; p = 0.009), also if children were further selected on the basis of high-risk HLA genotypes or the development of autoantibodies to multiple islet antigens (p = 0.01). The findings suggest that recent increasing incidence of type 1 diabetes in young children could be due to weakening of mechanisms that normally regulate autoimmune destruction of islet beta cells.

Collaboration


Dive into the Beena Akolkar's collaboration.

Top Co-Authors

Avatar

Marian Rewers

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Hagopian

Pacific Northwest Diabetes Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Xiong She

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Olli Simell

Turku University Hospital

View shared research outputs
Top Co-Authors

Avatar

Jorma Toppari

Turku University Hospital

View shared research outputs
Top Co-Authors

Avatar

Kendra Vehik

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry A. Erlich

Children's Hospital Oakland Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge