Begoña Barrios
Autonomous University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Begoña Barrios.
Communications in Contemporary Mathematics | 2014
Begoña Barrios; María Medina; Ireneo Peral
The aim of this paper is to study the solvability of the following problem, where (-Δ)s, with s ∈ (0, 1), is a fractional power of the positive operator -Δ, Ω ⊂ ℝN, N > 2s, is a Lipschitz bounded domain such that 0 ∈ Ω, μ is a positive real number, λ < ΛN,s, the sharp constant of the Hardy–Sobolev inequality, 0 < q < 1 and , with αλ a parameter depending on λ and satisfying . We will discuss the existence and multiplicity of solutions depending on the value of p, proving in particular that p(λ, s) is the threshold for the existence of solution to problem (Pμ).
Archive for Rational Mechanics and Analysis | 2014
Begoña Barrios; Ireneo Peral; Fernando Soria; Enrico Valdinoci
AbstractThe main goal of this work is to prove that every non-negative strong solutionu(x, t) to the problem
Open Mathematics | 2015
Begoña Barrios; Ida De Bonis; María Medina; Ireneo Peral
Journal D Analyse Mathematique | 2018
Begoña Barrios; Luigi Montoro; Berardino Sciunzi
u_t + (-\Delta)^{\alpha/2}{u} = 0 \,\, {\rm for} (x, t) \in {\mathbb{R}^n} \times (0, T ), \, 0 < \alpha < 2,
Advanced Nonlinear Studies | 2017
Boumediene Abdellaoui; Juan Antonio Aguilar; Begoña Barrios; Eduardo Colorado; Fernando Charro; Jesus Garcia Azorero; María Medina; Susana Merchán; Luigi Montoro; Ana Primo
Journal of Differential Equations | 2012
Begoña Barrios; Eduardo Colorado; A. de Pablo; U. Sánchez
ut+(-Δ)α/2u=0for(x,t)∈Rn×(0,T),0<α<2,can be written as
Annales De L Institut Henri Poincare-analyse Non Lineaire | 2015
Begoña Barrios; Eduardo Colorado; Raffaella Servadei; F. Soria
Advances in Nonlinear Analysis | 2015
Begoña Barrios; Ireneo Peral; Stefano Vita
u(x, t) = \int_{\mathbb{R}^n} P_t (x - y)u(y, 0) dy,
arXiv: Analysis of PDEs | 2016
Begoña Barrios; María Medina
arXiv: Analysis of PDEs | 2018
Begoña Barrios; Luigi Montoro; Ireneo Peral; F. Soria
u(x,t)=∫RnPt(x-y)u(y,0)dy,where