Begoña Pérez-Vich
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Begoña Pérez-Vich.
Theoretical and Applied Genetics | 2002
Begoña Pérez-Vich; José M. Fernández-Martínez; Martin Grondona; Steven J. Knapp; S. T. Berry
Abstract The genetic control of the synthesis of stearic acid (C18:0) and oleic acid (C18:1) in the seed oil of sunflower was studied through candidate-gene and QTL analysis. Two F2 mapping populations were developed using the high C18:0 mutant CAS-3 crossed to either HA-89 (standard, high linoleic fatty acid profile), or HAOL-9 (high C18:1 version of HA-89). A stearoyl-ACP desaturase locus (SAD17A), and an oleoyl-PC de-saturase locus (OLD7) were found to cosegregate with the previously described Es1 and Ol genes controlling the high C18:0 and the high C18:1 traits, respectively. Using linkage maps constructed from AFLP and RFLP markers, these loci mapped to LG1 (SAD17A) and to LG14 (OLD7) and were found to underlie the major QTLs affecting the concentrations of C18:0 and C18:1, explaining around 80% and 56% of the phenotypic variance of these fatty acids, respectively. These QTLs pleiotropically affected the levels of other primary fatty acids in the seed storage lipids. A minor QTL affecting both C18:0 and C18:1 levels was identified on LG8 in the HAOL-9×CAS-3 F2. This QTL showed a significant epistatic interaction for C18:1 with the QTL at the OLD7 locus, and was hypothesized to be a modifier of Ol. Two additional minor C18:0 QTLs were also detected on LG7 and LG3 in the HA-89×CAS-3 and the HAOL-9×CAS-3 F2 populations, respectively. No association between a mapped FatB thioesterase locus and fatty acid concentration was found. These results provide strong support about the role of fatty acid desaturase genes in determining fatty acid composition in the seed oil of sunflower.
Theoretical and Applied Genetics | 2004
Begoña Pérez-Vich; B. Akhtouch; Steven J. Knapp; Alberto Leon; Leonardo Velasco; José M. Fernández-Martínez; Simon Berry
Broomrape (Orobanche cumana Wallr.) is a root parasite of sunflower that is regarded as one of the most important constraints of sunflower production in the Mediterranean region. Breeding for resistance is the most effective method of control. P-96 is a sunflower line which shows dominant resistance to broomrape race E and recessive resistance to the very new race F. The objective of this study was to map and characterize quantitative trait loci (QTL) for resistance to race E and to race F of broomrape in P-96. A population from a cross between P-96 and the susceptible line P-21 was phenotyped for broomrape resistance in four experiments, two for race E and two for race F, by measuring different resistance parameters (resistance or susceptibility, number of broomrape per plant, and proportion of resistant plants per F3 family). This population was also genotyped with microsatellite and RFLP markers. A linkage map comprising 103 marker loci distributed on 17 linkage groups was developed, and composite interval mapping analyses were performed. In total, five QTL (or1.1, or3.1, or7.1 or13.1 and or13.2) for resistance to race E and six QTL (or1.1, or4.1, or5.1, or13.1, or13.2 and or16.1) for resistance to race F of broomrape were detected on 7 of the 17 linkage groups. Phenotypic variance for race E resistance was mainly explained by the major QTL or3.1 associated to the resistance or susceptibility character (R2=59%), while race F resistance was explained by QTL with a small to moderate effect (R2 from 15.0% to 38.7%), mainly associated with the number of broomrape per plant. Or3.1 was race E-specific, while or1.1, or13.1 and or13.2 of were non-race specific. Or13.1, and or13.2 were stable across the four experiments. Or3.1, and or7.1 were stable over the two race E experiments and or1.1 and or5.1 over the two race F experiments. The results from this study suggest that resistance to broomrape in sunflower is controlled by a combination of qualitative, race-specific resistance affecting the presence or absence of broomrape and a quantitative non-race specific resistance affecting their number.
Theoretical and Applied Genetics | 2000
Begoña Pérez-Vich; Rafael Garcés; José M. Fernández-Martínez
Abstract Two sunflower (Helianthus annuus L.) mutants with high concentrations of saturated fatty acids in their seed oil have been identified and studied extensively. The mutant line CAS-5 has high concentrations of palmitic acid (C16:0) (>25% compared with 7% in standard sunflower seed oil) and low-C18:0 values (3%). CAS-3 is characterized by its high levels of stearic acid (C18:0) (>22% compared with 4% in standard sunflower seed oil) and a low-C16:0 content (5%). CAS-5 also possesses elevated levels of palmitoleic acid (C16:1) (>5%), which is absent in standard sunflower seed oil. The objective of this study was to determine the relationships between the loci controlling the high-C16:0 and the high-C18:0 traits in these mutants. Plants of both mutants were reciprocally crossed. Gas chromatographic analyses of fatty acids from the seed oil of F1, F2, F3 and the BC1F1 to CAS-5 generations indicated that the loci controlling the high-C16:0 trait exerted an epistatic effect over the loci responsible for the high-C18:0 character. As a result, the phenotypic combination containing both the high-C16:0 levels of CAS-5 and the high-C18:0 levels of CAS-3 was not possible. However, phenotypes with a saturated fatty acid content of 44% (34.5% C16:0+9.5% C18:0) were identified in the F3 generation. These are the highest saturated (C16:0 and C18:0) levels reported so far in sunflower seed oil. When F3 C16:0 segregating generations in both a high- and a low-C18:0 background were compared, the high-C16:1 levels were not expressed as expected in the high-C18:0 background (CAS-3 background). In this case, the C16:1 content decreased to values below 1.5%, compared with >5% in a low-C18:0 background. As the stearoyl-ACP desaturase has been reported to catalyze the desaturation from C16:0-ACP to C16:1-ACP, these results suggested that a decrease in its activity was involved in the accumulation of C18:0 in the high-C18:0 mutant CAS-3.
Molecular Breeding | 2004
Begoña Pérez-Vich; Steven J. Knapp; Alberto Leon; José M. Fernández-Martínez; Simon Berry
Increased stearic acid (C18:0) content in the seed oil of sunflower would improve the oil quality for some edible uses. The sunflower line CAS-20 (C18:0 genotype Es1Es1es2es2), developed from the high C18:0 mutant line CAS-3 (C18:0 genotype es1es1es2es2; 25% C18:0), shows increased C18:0 levels in its seed oil (8.6%). The objective of this research was to map quantitative trait loci (QTL) conferring increased C18:0 content in CAS-20 in an F2 mapping population developed from crosses between HA-89 (wild type Es1Es1Es2Es2; low C18:0) and CAS-20, which segregates independently of the macromutation Es1 controlling high C18:0 content in CAS-3. Seed oil fatty acid composition was measured in the F2 population by gas-liquid chromatography. A genetic linkage map of 17 linkage groups (LGs) comprising 80 RFLP and 19 SSR marker loci from this population was used to identify QTL controlling fatty acid composition. Three QTL affecting C18:0 content were identified on LG3, LG11, and LG13, with all alleles for increased C18:0 content inherited from CAS-20. In total, these QTL explained 43.6% of the C18:0 phenotypic variation. Additionally, four candidate genes (two stearate desaturase genes, SAD6 and SAD17, and a FatA and a FatB thioesterase gene) were placed on the QTL map. On the basis of positional information, QTL on LG11 was suggested to be a SAD6 locus. The results presented show that increased C18:0 content in sunflower seed oil is not a simple trait, and the markers flanking these QTL constitute a powerful tool for plant breeding programs.
Theoretical and Applied Genetics | 1999
Begoña Pérez-Vich; Rafael Garcés; José M. Fernández-Martínez
Abstract A sunflower mutant, CAS-3, with about 25% stearic acid (C18:0) in the seed oil was recently isolated after a chemical-mutagen treatment of RDF-1-532 seeds (8% C18:0). To study the inheritance of the high C18:0 content, CAS-3 was reciprocally crossed to RDF-1–532 and HA-89 (5% C18:0). Significant reciprocal-cross differences were found in one of the two crosses, indicating possible maternal effects. In the CAS-3 and RDF-1–532 crosses, the segregation patterns of the F1, BC1, and F2 populations fitted a one-locus (designated Es1) model with two alleles (Es1, es1) and with partial dominance of low over high C18:0 content. Segregation patterns in the CAS-3 and HA-89 crosses indicated the presence of a second independent locus (designated Es2) with two alleles (Es2, es2), also with partial dominance of low over high C18:0 content. From these results, the proposed genotypes (C18:0 content) of each parent were as follows: CAS-3 (25.0% C18:0) =es1es1es2es2; RDF-1–532 (8.0% C18:0) =Es1Es1es2es2; and HA-89 (4.6% C18:0) =Es1Es1Es2Es2. The relationship between the proposed genotypes and their C18:0 content indicates that the Es1 locus has a greater effect on the C18:0 content than the Es2 locus. Apparently, the mutagenic treatment caused a mutation of Es1 to es1 in RDF-1–532.
Theoretical and Applied Genetics | 1999
Begoña Pérez-Vich; J. Fernández; Rafael Garcés; José M. Fernández-Martínez
Abstract Sunflower genotypes with increased levels of palmitic acid (C16 : 0) in the seed oil could be useful for food and industrial applications. The objective of the present study was to determine the inheritance of the high C16 : 0 content in the sunflower mutant line CAS-5 (>25% of the total oil fatty acids). This mutant was reciprocally crossed with the lines HA-89 (5.7% C16 : 0) and BSD-2-691 (5.4% C16 : 0), the latter being the parental line from which CAS-5 was isolated. No maternal effect for the C16 : 0 content was observed from the analysis of F1 seeds in any of the crosses. The inheritance study of the C16 : 0 content in F1, F2 and BC1F1 seeds from the crosses of CAS-5 with its parental line BSD-2-691 indicated that the segregation fitted a model of two alleles at one locus with partial dominance for the low content. The analysis of the fatty acid composition in the F2 populations from the crosses with HA-89 revealed a segregation fitting a ratio 19 : 38 : 7 for low (<7.5%), middle (7.5–15%), and high (>25%) C16 : 0 content, respectively. This segregation was explained on the basis of three loci (P1, P2, P3) each having two alleles showing partial dominance for low content. The genotypes with a high C16 : 0 content were homozygous for the recessive allele p1 and for at least one of the other two recessive alleles, p2 or p3. This model was further confirmed with the analysis of the F3 and the BC1F1 generations. It was concluded that both the recessive alleles p2 and p3 were already present in the BSD-2-691 line, the allele p1 being the result of a mutation from P1. This genetic study will facilitate breeding strategies associated with the incorporation of the high C16 : 0 trait into agronomically acceptable sunflower hybrids.
Molecular Breeding | 2006
Elsa M. Vera-Ruiz; Leonardo Velasco; Alberto Leon; José M. Fernández-Martínez; Begoña Pérez-Vich
Tocopherols are a family of fat soluble antioxidants of great value for both nutritional and technological properties of seed oils. The four naturally occurring tocopherols (alpha-, beta-, gamma- and delta-tocopherol) widely differ for their relative in vivo (vitamin E) and in vitro antioxidant properties. Sunflower (Helianthus annuus L.) seeds mainly contain alpha-tocopherol (95% of the total tocopherols), which has a great vitamin E value but a low in vitro activity. Conversely, beta-tocopherol shows more balanced in vitro and in vivo antioxidant properties, which is desired for specific uses of the oil. The sunflower line T589 is characterised by an increased beta-tocopherol content in the seeds ( >30%), which is determined by the single gene Tph1. The objectives of this study were to map the Tph1 gene by molecular markers (SSRs) and to develop a linkage map of the Tph1-encompassing region. High performance liquid chromatography (HPLC) was used to phenotype 103 F2 and 67 F3 progeny from the mapping population CAS-12 × T589, which segregates for Tph1. Bulk segregant analysis identified two SSR markers on linkage group (LG) 1 linked to Tph1. A large linkage group was constructed by genotyping additional SSRs and INDEL markers. Tph1 mapped to the upper end of LG 1 and cosegregated with the SSR markers ORS1093, ORS222, and ORS598. The availability of tightly linked PCR-based markers and the location of the Tph1 gene on the sunflower genetic map will be useful for marker-assisted selection in sunflower and provides a basis for the physical mapping and positional cloning of this gene.
The Journal of Agricultural Science | 2010
Leonardo Velasco; L. Del Moral; Begoña Pérez-Vich; José M. Fernández-Martínez
Sunflower oil, with more than 0·9 of tocopherols in the alpha-tocopherol form, supplies more vitamin E than any other vegetable oil. Thus far, no breeding to increase vitamin E levels in sunflower seeds has been conducted. The objective of the present research was to develop sunflower lines with high and low total seed tocopherol content through evaluation and subsequent selection of a large germplasm collection (952 sunflower entries). A range of variation from 119 to 491 mg/kg was found. Selection conducted from S 1 to S 4 plant generations allowed the isolation of line IAST-413, with an increased tocopherol content of 467 mg/kg compared to 251 mg/kg in the control line HA89, and line IAST-522, with a reduced tocopherol content of 73 mg/kg. Another accession with potentially high tocopherol content, but completely self-incompatible, was crossed to the line HA89 followed by plant-to-row selection up to the F 5 plant generation; it averaged 463 mg/kg compared to 240 mg/kg in HA89. Two field experiments carried out at Cordoba in southern Spain in 2006 and 2007 with different sowing dates confirmed that the increased tocopherol content in the selected lines was consistently expressed across environments.
Archive | 2013
Begoña Pérez-Vich; Leonardo Velasco; Patrick J. Rich; Gebisa Ejeta
Resistance to parasitic Orobanchaceae is a key component of crop management in agricultural systems where Striga, Orobanche, and Phelipanche species are major and prevalent pests. Durable resistance is best achieved through stacking multiple genes and gene combinations for different resistance mechanisms into adapted crop varieties. The traits stacked either interfere with the normal host/parasite association or mitigate its influence on crop productivity. Resistance trait discovery and transfer are enhanced through understanding the biology of crop/parasite association. This chapter reviews efforts and progress made in finding the traits exploited, describes how knowledge of parasitism was enhanced, and discusses the impact of the development and deployment of crop plants with improved resistance and tolerance to weedy Orobanchaceae. Physiology-based breeding and marker-assisted breeding are based on the discovery, characterization, and mapping of major genes and QTLs associated with resistance. These were used in various host/parasite systems and resistance models, which include horizontal resistance and vertical resistance.
BMC Plant Biology | 2012
M. J. García-Moreno; José M. Fernández-Martínez; Leonardo Velasco; Begoña Pérez-Vich
BackgroundTocopherols are natural antioxidants with both in vivo (vitamin E) and in vitro activity. Sunflower seeds contain predominantly alpha-tocopherol (>90% of total tocopherols), with maximum vitamin E effect but lower in vitro antioxidant action than other tocopherol forms such as gamma-tocopherol. Sunflower germplasm with stable high levels of gamma-tocopherol (>85%) has been developed. The trait is controlled by recessive alleles at a single locus Tph2 underlying a gamma-tocopherol methyltransferase (gamma-TMT). Additionally, unstable expression of increased gamma-tocopherol content in the range from 5 to 85% has been reported. The objective of this research was to determine the genetic basis of unstable expression of high gamma-tocopherol content in sunflower seeds.ResultsMale sterile plants of nuclear male sterile line nmsT2100, with stable high gamma-tocopherol content, were crossed with plants of line IAST-1, with stable high gamma-tocopherol content but derived from a population that exhibited unstable expression of the trait. F2 seeds showed continuous segregation for gamma-tocopherol content from 1.0 to 99.7%. Gamma-tocopherol content in F2 plants (average of 24 individual F3 seeds) segregated from 59.4 to 99.4%. A genetic linkage map comprising 17 linkage groups (LGs) was constructed from this population using 109 SSR and 20 INDEL marker loci, including INDEL markers for tocopherol biosynthesis genes. QTL analysis revealed a major QTL on LG 8 that corresponded to the gamma-TMT Tph2 locus, which suggested that high gamma-tocopherol lines nmsT2100 and IAST-1 possess different alleles at this locus. Modifying genes were identified at LGs 1, 9, 14 and 16, corresponding in most cases with gamma-TMT duplicated loci.ConclusionsUnstable expression of high gamma-tocopherol content is produced by the effect of modifying genes on tph2a allele at the gamma-TMT Tph2 gene. This allele is present in line IAST-1 and is different to allele tph2 present in line nmsT2100, which is not affected by modifying genes. No sequence differences at the gamma-TMT gene were found associated to allelic unstability. Our results suggested that modifying genes are mostly epistatically interacting gamma-TMT duplicated loci.