Begüm Nurpelin Sağlık
Anadolu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Begüm Nurpelin Sağlık.
Bioorganic & Medicinal Chemistry Letters | 2016
Ümide Demir Özkay; Özgür Devrim Can; Begüm Nurpelin Sağlık; Ulviye Acar Çevik; Serkan Levent; Yusuf Özkay; Sinem Ilgın; Özlem Atlı
In the current study, 14 new benzothiazole-piperazine compounds were designed to meet the structural requirements of acetylcholine esterase (AChE) inhibitors. The target compounds were synthesised in three steps. Structures of the newly synthesised compounds (7-20) were confirmed using IR, 1H NMR, 13C NMR, and HRMS methods. The inhibitory potential of the compounds on AChE (E.C.3.1.1.7, from electric eel) was then investigated. Among the compounds, 19 and 20 showed very good activity on AChE enzyme. Kinetics studies were performed to observe the effects of the most active compounds on the substrate-enzyme relationship. Cytotoxicity studies, genotoxicity studies, and theoretical calculation of pharmacokinetics properties were also carried out. The compounds 19 and 20 were found to be nontoxic in both of the toxicity assays. A good pharmacokinetics profile was predicted for the synthesised compounds. Molecular docking studies were performed for the most active compounds, 19 and 20, and interaction modes with enzyme active sites were determined. Docking studies indicated a strong interaction between the active sites of AChE enzyme and the analysed compounds.
European Journal of Medicinal Chemistry | 2016
Begüm Nurpelin Sağlık; Sinem Ilgın; Yusuf Özkay
Donepezil (DNP), an acetylcholinesterase (AChE) inhibitor, is one of the most preferred choices in Alzheimer diseases (AD) therapy. In the present study, 38 new DNP analogues were synthesized. Structures of the synthesized compounds (1-38) were elucidated by IR, 1H NMR, 13C NMR and HRMS spectroscopic methods and elemental analysis. Inhibitory potential of the compounds on cholinesterase enzymes was investigated. None of the compounds displayed significant activity on butyrylcholinesterase (BChE) enzyme. On the other hand, compounds 26-29 indicated important inhibitory activity on AChE enzyme. Kinetic studies were performed in order to observe the effects of the most active compounds on substrate-enzyme relationship. Cytotoxicity studies and theoretical calculation of pharmacokinetic properties were also carried out to get an information about toxicity and pharmacokinetic profiles of the compounds. The compounds 26-29 were found to be nontoxic at their effective concentrations against AChE. A good pharmacokinetic profile was predicted for these compounds. Docking studies were performed for the most active compounds 26-29 and interaction modes with enzyme active sites were determined. Docking studies revealed that there is a strong interaction between the active sites of AChE enzyme and analyzed compounds.
Molecules | 2017
Hülya Karaca Gençer; Ulviye Acar Çevik; Serkan Levent; Begüm Nurpelin Sağlık; Büşra Korkut; Yusuf Özkay; Sinem Ilgın; Yusuf Öztürk
Owing to the growing need for antifungal agents, we synthesized a new series 2-((5-(4-(5-substituted-1H-benzimidazol-2-yl)phenyl)-4-substituted-4H-1,2,4-triazol-3-yl)thio)-1-(substitutedphenyl)ethan-1-one derivatives, which were tested against Candida species. The synthesized compounds were characterized and elucidated by FT-IR, 1H-NMR, 13C-NMR and HR-MS spectroscopies. The synthesized compounds were screened in vitro anticandidal activity against Candida species by broth microdiluation methods. In vitro cytotoxic effects of the final compounds were determined by MTT assay. Microbiological studies revealed that compounds 5m, 5o, 5r, 5t, 5y, 5ab, and 5ad possess a good antifungal profile. Compounds 5w was the most active derivative and showed comparable antifungal activity to those of reference drugs ketoconazole and fluconazole. Cytotoxicity evaluation of compounds 5m, 5o, 5r, 5w, 5y, 5ab and 5ad showed that compounds 5w and 5ad were the least cytotoxic agents. Effects of these two compounds against ergosterol biosynthesis were observed by LC-MS-MS method, which is based on quantification of ergosterol level in C. albicans. Compounds 5w and 5d inhibited ergosterol biosynthesis concentration dependently. A fluorescence microscopy study was performed to visualize effect of compound 5w against C. albicans at cellular level. It was determined that compound 5w has a membrane damaging effect, which may be related with inhibition of biosynthesis of ergosterol.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2017
Hülya Karaca Gençer; Ulviye Acar Çevik; Betül Kaya Çavuşoğlu; Begüm Nurpelin Sağlık; Serkan Levent; Özlem Atlı; Sinem Ilgın; Yusuf Özkay; Zafer Asım Kaplancıklı
Abstract A series of 2-(4-substitutedmethylphenyl)propionic acid derivatives (6a–6m) were synthesized, characterized and evaluated for cyclooxygenase (COX) enzyme inhibitory and antimicrobial activity. Test compounds that exhibited good COX inhibition and antibacterial activity were further screened for their cytotoxicity and genotoxicity. Compounds 6h and 6l showed better COX-1 and COX-2 inhibition when compared to ibuprofen. Inhibition potency of these compounds against COX-2 was very close to that of nimesulide. The compounds 6d, 6h, 6l and 6m displayed promising antibacterial property when compared to chloramphenicol. However, the compound 6l was emerged as the best dual COX inhibitory-antibacterial agent in this study. The ADME prediction of the compounds revealed that they may have a good pharmacokinetic profile. Docking results of the compounds 6h and 6l with COX-1 (PDB ID: 1EQG) also exhibited a strong binding profile.
Molecules | 2017
Nafiz Oncu Can; Derya Osmaniye; Serkan Levent; Begüm Nurpelin Sağlık; Beril İnci; Sinem Ilgın; Yusuf Özkay; Zafer Asım Kaplancıklı
In the present work, 14 new 1-substituted-2-phenylhydrazone derivatives were synthesized to evaluate their inhibitory activity against hMAO enzymes. The structures of the newly synthesized hydrazones 2a–2n were characterized by IR, 1H-NMR, 13C-NMR, HR-MS spectroscopic methods. The inhibitory activity of compounds 2a–2n against hMAO-A and hMAO-B enzymes was elucidated by using an in-vitro Amplex Red® reagent assay based on fluorometric methods. According to the activity studies, 2a and 2b were found to be the most active compounds against hMAO-A enzyme, with IC50 values of 0.342 µM and 0.028 µM, respectively. The most active compounds 2a–2b were evaluated by means of enzyme kinetics and docking studies. Moreover, these compounds were subjected to cytotoxicity and genotoxicity tests to establish their preliminary toxicological profiles and were found to be non-cytotoxic and non-genotoxic. Consequently, the findings of this study display the biological importance of compounds 2a, 2b as selective, irreversible and competitive inhibitors of hMAO-A. Docking studies revealed that there is a strong interaction between hMAO-A and the most active compound 2b.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2016
Betül Kaya; Begüm Nurpelin Sağlık; Serkan Levent; Yusuf Özkay; Zafer Asım Kaplancıklı
Abstract In the present work, 12 new 2-(5-substituted-benzothiazol-2-ylsulfanyl)-N-(substitutedbenzyl)-N-(4-substitutedphenyl) acetamide derivatives (4a–l) was designed and synthesized. The structures of the synthesized compounds were clarified using Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR) and high-resolution mass spectrometry (HRMS) spectral data. Purity of synthesized compounds was checked by high-performance liquid chromatography (HPLC) analyses and purity ratio was found between 96.5–99.9%. The inhibitory activity of the compounds against MAO-A and MAO-B enzymes was evaluated by using in vitro flurometric method in which kynuramine was used as a substrate. Most of the compounds exhibited more selective inhibitory activity towards monoamine oxidase B (MAO-B) than monoamine oxidase A (MAO-A). Compound 4h was determined as the most potent compound against both enzyme types. The MAO-B enzyme kinetic of the compound 4h was studied and nature of MAO-B inhibition, caused by this compound, was investigated. The graphical analysis of steady-state inhibition data indicated that compound 4h is a mixed type inhibitor. Theoretical calculation of absorption, distribution, metabolism, excretion (ADME) properties for the synthesized compounds was also carried out and observed data supported the potential of compound 4h.
Phosphorus Sulfur and Silicon and The Related Elements | 2017
Serkan Levent; Ulviye Acar Çevik; Begüm Nurpelin Sağlık; Yusuf Özkay; Özgür Devrim Can; Ümide Demir Özkay; Ümit Uçucu
GRAPHICAL ABSTRACT ABSTRACT The present study was undertaken to synthesize some novel lipophilic piperazine and piperidinedithiocarbamates and investigate their inhibitory potencies against cholinesterase enzymes. In the synthetic studies, 44 new compounds were isolated. The structures of the synthesized compounds were confirmed by spectroscopic analyses. Enzymatic studies were carried out using modified Ellmans assay against Acetylcholinesterase (AChE) and Butrylcholinesterase (BChE) enzymes, and it was observed that some of the compounds selectively inhibit AChE. Theoretical ADME predictions were calculated for selected compounds in the series. Enzyme kinetics and molecular docking studies were performed for the most active compound C41 and nature of inhibition and interactions between enzyme and ligand were explained.
Bioorganic Chemistry | 2018
Betül Kaya Çavuşoğlu; Begüm Nurpelin Sağlık; Yusuf Özkay; Beril İnci; Zafer Asım Kaplancıklı
A new series of thirteen 2-[(4-fluorophenyl)(4-nitrobenzyl)amino]-2-oxoethyl-1-substituted-carbodithioate derivatives (4a-4m) were synthesized and tested for their human monoamine oxidase A and B (hMAO-A and hMAO-B) inhibitory potential by an in vitro fluorometric method. Most of the compounds have found to be selective towards MAO-B than MAO-A. Compound 4j that carrying 4-nitrophenyl piperazine moiety, was detected as the most active agent amongst all compounds with the IC50 value of 0.097 ± 0.003 µM for MAO-B while that of selegiline was 0.040 ± 0.002 µM. The enzyme kinetic study reported that compound 4j is a reversible and non-competitive inhibitor. Interaction modes between the hMAO-B and compound 4j were determined by docking studies. The study also revealed that compound 4j has the highest binding scores. Besides, compound 4j has not cytotoxicity at its effective concentration against hMAO-B.
Pharmacological Reports | 2017
Ümide Demir Özkay; Özgür Devrim Can; Begüm Nurpelin Sağlık; Nazlı Turan
BACKGROUND Acetylcholinesterase (AChE) inhibitors are frequently prescribed to mitigate the cognitive decline in Alzheimers disease. Thus, we investigated the possible efficacy of the AChE inhibitor 2-[(6-Nitro-2-benzothiazolyl)amino]-2-oxoethyl4-[2-(N,N-dimethylamino)ethyl] piperazine-1 carbodithioate (BPCT) in a streptozotocin (STZ)-induced Alzheimers disease model (SADM). METHODS First, we analyzed the molecular interaction of BPCT with AChE via a docking study. Then, the cognitive effects of BPCT (10 and 20mg/kg) were evaluated in intracerebroventricular STZ- and vehicle-administered rats with the elevated plus maze (EPM), Morris water maze (MWM), and active avoidance (AA) tests. Locomotor activity was also assessed. RESULTS Docking analysis indicated significant binding of BPCT to the AChE active site. In behavioral tests, STZ administration impaired cognitive performance in SADM rats versus control rats. Treatment with donepezil or BPCT significantly decreased the prolonged 2nd retention transfer latency and 2nd retention latency time values of the SADM group in the EPM and MWM tests, respectively. Further, prolonged latency times were decreased and reduced frequency of avoidance events were increased in the AA test. Locomotor activity between groups was not different. CONCLUSION BPCT appears to function as a central AChE inhibitor, and its improvement of deficits in SADM rats suggests that it has therapeutic potential in Alzheimers disease.
Molecules | 2017
Sinem Ilgın; Derya Osmaniye; Serkan Levent; Begüm Nurpelin Sağlık; Ulviye Acar Çevik; Betül Kaya Çavuşoğlu; Yusuf Özkay; Zafer Asım Kaplancıklı
In the current work a new class of novel benzothiazole-hydrazone derivatives was designed and synthesized as hMAO-B inhibitors. Structures of the obtained compounds (3a–3j) were characterized by IR, 1H-NMR, 13C-NMR, and HRMS spectroscopic methods. The inhibitory activity of compounds (3a–3j) against hMAO-A and hMAO-B enzymes was evaluated by using an in vitro fluorometric method. According to activity results, some of the synthesized compounds displayed selective and significant hMAO-B enzyme inhibitor activity. Compound 3e was the most active derivative in the series with an IC50 value of 0.060 µM. Furthermore, cytotoxicity of compound 3e was investigated and found to be non-cytotoxic. Absorption, distribution, metabolism, and excretion (ADME) and blood-brain barrier (BBB) permeability predictions were performed for all compounds. It was determined that these compounds may have a good pharmacokinetic profiles. Bınding modes between the most active compound 3e and the hMAO-B enzyme were analyzed by docking studies. It was observed that there is a strong interaction between compound 3e and enzyme active site.