Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Behnaam Aazhang is active.

Publication


Featured researches published by Behnaam Aazhang.


conference on information sciences and systems | 1990

Multistage detection in asynchronous code-division multiple-access communications

Mai-iesh K. Varanasi; Behnaam Aazhang

A multiuser detection strategy for coherent demodulation in an asynchronous code-division multiple-access system is proposed and analyzed. The resulting detectors process the sufficient statistics by means of a multistage algorithm based on a scheme for annihilating successive multiple-access interference. An efficient real-time implementation of the multistage algorithm with a fixed decoding delay is obtained and shown to require a computational complexity per symbol which is linear in the number of users K. Hence, the multistage detector contrasts with the optimum demodulator, which is based on a dynamic programming algorithm, has a variable decoding delay, and has a software complexity per symbol that is exponential in K. An exact expression is obtained and used to compute the probability of error is obtained for the two-stage detector, showing that the two-stage receiver is particularly well suited for near-far situations, approaching performance of single-user communications as the interfering signals become stronger. The near-far problem is therefore alleviated. Significant performance gains over the conventional receiver are obtained even for relatively high-bandwidth-efficiency situations. >


IEEE Transactions on Information Theory | 2003

On beamforming with finite rate feedback in multiple-antenna systems

Krishna Kiran Mukkavilli; Ashutosh Sabharwal; Elza Erkip; Behnaam Aazhang

We study a multiple-antenna system where the transmitter is equipped with quantized information about instantaneous channel realizations. Assuming that the transmitter uses the quantized information for beamforming, we derive a universal lower bound on the outage probability for any finite set of beamformers. The universal lower bound provides a concise characterization of the gain with each additional bit of feedback information regarding the channel. Using the bound, it is shown that finite information systems approach the perfect information case as (t-1)2/sup -B/t-1/, where B is the number of feedback bits and t is the number of transmit antennas. The geometrical bounding technique, used in the proof of the lower bound, also leads to a design criterion for good beamformers, whose outage performance approaches the lower bound. The design criterion minimizes the maximum inner product between any two beamforming vectors in the beamformer codebook, and is equivalent to the problem of designing unitary space-time codes under certain conditions. Finally, we show that good beamformers are good packings of two-dimensional subspaces in a 2t-dimensional real Grassmannian manifold with chordal distance as the metric.


IEEE Transactions on Communications | 1991

Near-optimum detection in synchronous code-division multiple-access systems

Mahesh K. Varanasi; Behnaam Aazhang

Communication networks using code division multiple access (CDMA) include applications where several packets of information are transmitted synchronously and simultaneously over a common channel. Consideration is given to the problem of simultaneously demodulating every packet from such a transmission. A nonlinear detection scheme based on a linear complexity multistage multiple-access interference rejection algorithm is studied. A class of linear detectors is considered as constituting the first stage for the multistage detector. A bit-error probability comparison of the linear and multistage detectors is undertaken. It is shown that the multistage detectors are capable of achieving considerable improvements over the linear detectors, particularly in near-far situations, i.e., in the demodulation of weak signals in the presence of strong interfering signals. This problem has been of primary concern for currently operational CDMA systems. >


IEEE Transactions on Communications | 1999

Joint multipath-Doppler diversity in mobile wireless communications

Akbar M. Sayeed; Behnaam Aazhang

We introduce a new approach for achieving diversity in spread-spectrum communications over fast-fading multipath channels. The RAKE receiver used in existing systems suffers from significant performance degradation due to the rapid channel variations encountered under fast fading. We show that the Doppler spread induced by temporal channel variations in fact provides another means for diversity that can be further exploited to combat fading. We develop the concept of Doppler diversity and propose a framework that exploits joint multipath-Doppler diversity in an optimal fashion. Performance analysis shows that even the relatively small Doppler spreads encountered in practice can be leveraged into significant diversity gains via our approach. The framework is applicable in several mobile wireless multiple access systems and can provide substantial performance improvement over existing systems.


IEEE Transactions on Information Theory | 2004

Delay-bounded packet scheduling of bursty traffic over wireless channels

Dinesh Rajan; Ashutosh Sabharwal; Behnaam Aazhang

In this paper, we study minimal power transmission of bursty sources over wireless channels with constraints on mean queuing delay. The power minimizing schedulers adapt power and rate of transmission based on the queue and channel state. We show that packet scheduling based on queue state can be used to trade queuing delay with transmission power, even on additive white Gaussian noise (AWGN) channels. Our extensive simulations show that small increases in average delay can lead to substantial savings in transmission power, thereby providing another avenue for mobile devices to save on battery power. We propose a low-complexity scheduler that has near-optimal performance. We also construct a variable-rate quadrature amplitude modulation (QAM)-based transmission scheme to show the benefits of the proposed formulation in a practical communication system. Power optimal schedulers with absolute packet delay constraints are also studied and their performance is evaluated via simulations.


IEEE Transactions on Communications | 1995

A multiuser receiver for code division multiple access communications over multipath channels

Urs Fawer; Behnaam Aazhang

A multiuser communication system is considered where K users share a channel with multipath propagation by using code division for multiple access. Data modulation is carried out by binary phase shift keying and direct sequence spread spectrum signaling. The micro-cellular communication media is modeled as a frequency selective fading channel with multipath propagation. The multipath diversity of the received signals from the K users is exploited by a bank of K RAKE correlators. Algorithms based on the maximum likelihood rule have been developed for estimating the complex channel coefficients as well as for detection of the desired data packets from the sufficient statistics provided by the RAKE correlators. The performance of the resulting multiuser detector is evaluated analytically and via Monte Carlo simulations. The results indicate that the estimator of the channel coefficients has a variance close to the Cramer-Rao lower bound, and that the proposed multiuser detector is capable of eliminating the near-far effect as well as processing the signals propagated through multiple paths. >


information processing in sensor networks | 2003

Bounds on achievable rates for general multi-terminal networks with practical constraints

Mohammad Ali Khojastepour; Ashutosh Sabharwal; Behnaam Aazhang

We consider the problem of communication in a general multi-terminal network where each node of the network is a potential sender or receiver (or both) but it cannot do both functions together. The motivation for this assumption comes from the fact that current radios in sensor nodes operate in TDD mode when the transmitting and receiving frequencies are the same. We label such a radio as a cheap radio and the corresponding node of the network as a cheap node. We derive bounds on the achievable rates in a general multi-terminal network with finite number of states. The derived bounds coincide with the known cut-set bound [11] of network information theory if the network has just one state. Also, the bounds trivially hold in the network with cheap nodes because such a network operates in a finite number of states when the number of nodes is finite. As an example, application of these bounds in the multi-hop network and the relay channel with cheap nodes is presented. In both of these cases, the bounds are tight enough to provide converses for the coding theorems [16], and thus their respective capacities are derived.


international symposium on information theory | 2002

On design criteria and construction of non-coherent space-time constellations

Mohammad Jaber Borran; Ashutosh Sabharwal; Behnaam Aazhang; Don H. Johnson

We consider the problem of digital communication in a Rayleigh flat-fading environment using a multiple-antenna system, when the channel state information is available neither at the transmitter nor at the receiver. It is known that at high signal-to-noise ratio (SNR), or when the coherence interval is much larger than the number of transmit antennas, a constellation of unitary matrices can achieve the capacity of the noncoherent system. However, at low SNR, high spectral efficiencies, or for small values of coherence interval, the unitary constellations lose their optimality and fail to provide an acceptable performance. In this work, inspired by the Steins lemma, we propose to use the Kullback-Leibler (KL) distance between conditional distributions to design space-time constellations for noncoherent communication. In fast fading, i.e., when the coherence interval is equal to one symbol period and the unitary construction provides only one signal point, the new design criterion results in pulse amplitude modulation (PAM)-type constellations with unequal spacing between constellation points. We also show that in this case, the new design criterion is equivalent to design criteria based on the exact pairwise error probability and the Chernoff information. When the coherence interval is larger than the number of transmit antennas, the resulting constellations overlap with the unitary constellations at high SNR, but at low SNR they have a multilevel structure and show significant performance improvement over unitary constellations of the same size. The performance improvement becomes especially more significant when an appropriately designed outer code or multiple receive antennas are used. This property, together with the facts that the proposed constellations eliminate the need for training sequences and are most suitable for low SNR, makes them a good candidate for uplink communication in wireless systems.


IEEE Journal on Selected Areas in Communications | 1998

Multiuser detection in fast-fading multipath environments

Akbar M. Sayeed; Andrew Sendonaris; Behnaam Aazhang

We propose a new framework for multiuser detection in fast-fading channels that are encountered in many mobile communication scenarios. Existing multiuser RAKE receivers, developed to combat multipath fading and multiuser interference in slow fading, suffer substantial degradation in performance under fast fading due to errors in channel state estimation. The detectors proposed in this paper employ a novel receiver structure based on time-frequency (TF) processing that is dictated by a canonical representation of the wide-sense stationary uncorrelated scatterer (WSSUS) channel model. The workhorse of the framework is a TF generalization of the RAKE receiver that exploits joint multipath-Doppler diversity. Analytical and simulated results based on realistic fast-fading assumptions demonstrate that the proposed multiuser detectors promise substantially improved performance compared to existing systems due to the inherently higher level of diversity afforded by multipath-Doppler processing.


wireless communications and networking conference | 2004

The capacity of average and peak power constrained fading channels with channel side information

Mohammad Ali Khojastepour; Behnaam Aazhang

We derive the ergodic capacity of discrete-time fading channel with additive Gaussian noise subject to both peak and average power constraint. The average power can be interpreted as the cost that we incur to achieve a certain rate. On the other hand, the motivation of this analysis comes from the fuel that there is also a peak power limitation in practical communication system. It is been shown that the optimal power adaption is no longer water-filling or constant power adaption which is the case where there is no limitation on the peak power. The numerical results show that the importance of peak power constraint becomes negligible for relatively low available average power, while it is limiting the capacity to be finite even as the available average power goes to infinity.

Collaboration


Dive into the Behnaam Aazhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akbar M. Sayeed

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge