Behrooz Darbani
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Behrooz Darbani.
Biotechnology Advances | 2013
Behrooz Darbani; Jean-François Briat; Preben Bach Holm; Søren Husted; Shahin Noeparvar; Søren Borg
A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects of iron homeostasis have so far attracted little attention. Looking into the past can inform us on how long-term oxygen and iron-availability fluctuations have influenced the evolution of iron uptake mechanisms. Finally, we evaluate to what extent this homeostastic road map can be used for the development of novel biofortification strategies in order to alleviate iron deficiency in human.
Scientific Reports | 2016
Behrooz Darbani; Mohammed Saddik Motawia; Carl Erik Olsen; Hussam Hassan Nour-Eldin; Birger Lindberg Møller; Fred Rook
Genomic gene clusters for the biosynthesis of chemical defence compounds are increasingly identified in plant genomes. We previously reported the independent evolution of biosynthetic gene clusters for cyanogenic glucoside biosynthesis in three plant lineages. Here we report that the gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor additionally contains a gene, SbMATE2, encoding a transporter of the multidrug and toxic compound extrusion (MATE) family, which is co-expressed with the biosynthetic genes. The predicted localisation of SbMATE2 to the vacuolar membrane was demonstrated experimentally by transient expression of a SbMATE2-YFP fusion protein and confocal microscopy. Transport studies in Xenopus laevis oocytes demonstrate that SbMATE2 is able to transport dhurrin. In addition, SbMATE2 was able to transport non-endogenous cyanogenic glucosides, but not the anthocyanin cyanidin 3-O-glucoside or the glucosinolate indol-3-yl-methyl glucosinolate. The genomic co-localisation of a transporter gene with the biosynthetic genes producing the transported compound is discussed in relation to the role self-toxicity of chemical defence compounds may play in the formation of gene clusters.
Journal of Biological Research-thessaloniki | 2014
Behrooz Darbani; Charles Neal Stewart
BackgroundReliability and reproducibility are key metrics for gene expression assays. This report assesses the utility of the correlation coefficient in the analysis of reproducibility and reliability of gene expression data.ResultsThe correlation coefficient alone is not sufficient to assess equality among sample replicates but when coupled with slope and scatter plots expression data equality can be better assessed. Narrow-intervals of scatter plots should be shown as a tool to inspect the actual level of noise within the data. Here we propose a method to examine expression data reproducibility, which is based on the ratios of both the means and the standard deviations for the inter-treatment expression ratios of genes. In addition, we introduce a fold-change threshold with an inter-replicate occurrence likelihood lower than 5% to perform analysis even when reproducibility is not acceptable. There is no possibility to find a perfect correlation between transcript and protein levels even when there is not any post-transcriptional regulatory mechanism. We therefore propose an adjustment for protein abundance with that of transcript abundance based on open reading frame length.ConclusionsHere, we introduce a very efficient reproducibility approach. Our method detects very small changes in large datasets which was not possible through regular correlation analysis. We also introduce a correction on protein quantities which allows us to examine the post-transcriptional regulatory effects with a higher accuracy.
PLOS ONE | 2015
Behrooz Darbani; Shahin Noeparvar; Søren Borg
In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between the treatments, indicating metal-affinity shifts among isoforms of metal transporters. Most important, we found the zinc treatment to impair both photosynthesis and respiration. A wide range of transcriptional changes including stress-related genes and negative feedback loops emphasize the importance to withhold mineral contents below certain cellular levels which otherwise might lead to agronomical impeding side-effects. By illustrating new mechanisms, genes, and transcripts, this report provides a solid platform towards understanding the complex network of plant mineral homeostasis.
Journal of Biotechnology | 2014
Behrooz Darbani; C. Neal Stewart; Shahin Noeparvar; Søren Borg
This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies. For maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce an analytical approach to examine the suitability of correction methods by considering the inter-treatment bias as well as the inter-replicate variance, which allows use of the best correction method with minimum residual bias. Analyses of RNA sequencing and microarray data showed that the efficiencies of correction methods are influenced by the inter-treatment bias as well as the inter-replicate variance. Therefore, we recommend inspecting both of the bias sources in order to apply the most efficient correction method. As an alternative correction strategy, sequential application of different correction approaches is also advised.
Plant Biotechnology Journal | 2016
Shahin Noeparvar; Behrooz Darbani; Birgitte Tauris; Søren Husted; Daniel P. Persson; Rebecca F. Mills; Lorraine E. William; Eva Vincze; Inger Bæksted Holme; Søren Borg
Cereals are a major source of dietary energy and protein but are nutritionally poor in micronutrients. Zinc (Zn) biofortification of staple crops has been proposed as a promising strategy to combat the global challenge of human Zn-deficiency. The aim of this study was to improve the Zn content in the edible part of the barley (Hordeum vulgare L.) grain by enhancing Zn translocation into the developing seeds. We demonstrate that the barley plasma membrane P-type ATPase Zn transporter, HvHMA2 is an efficient candidate for mineral biofortification of crops. Following a cisgenic approach to produce transgenic homozygous barley line over-expressing HvHMA2 in the transfer cells of the grain, resulted in a doubling of a wide range of nutrients including Zn, iron (Fe), and magnesium (Mg) in the inner endosperm. This article is protected by copyright. All rights reserved.
Biotechnology Journal | 2007
Behrooz Darbani; Amin Eimanifar; C. Neal Stewart; William N. Camargo
Journal of Cereal Science | 2012
Søren Borg; Henrik Brinch-Pedersen; Birgitte Tauris; Lene Heegaard Madsen; Behrooz Darbani; Shahin Noeparvar; Preben Bach Holm
Biotechnology(faisalabad) | 2008
Behrooz Darbani; Safar Farajnia; Mahmoud Toorchi; Saeed Zakerbostanabad; Shahin Noeparvar; C. Neal Stewart
Frontiers in Plant Science | 2016
Behrooz Darbani; Shahin Noeparvar; Søren Borg