Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beibei Chen is active.

Publication


Featured researches published by Beibei Chen.


Talanta | 2014

Graphene oxide–silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples

Shaowei Su; Beibei Chen; Man He; Bin Hu

In this work, a novel graphene oxide-silica (GO-silica) composite coating was prepared for hollow fiber solid phase microextraction (HF-SPME) of trace Mn, Co, Ni, Cu, Cd and Pb followed by on-line inductively coupled plasma mass spectrometry (ICP-MS) detection. The structure of the prepared graphene oxide and GO-silica composite was studied and elucidated by atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The GO-silica composite coated hollow fiber was characterized by scanning electron microscope (SEM), and the results show that the GO-silica composite coating possessed a homogeneous and wrinkled structure. Various experimental parameters affecting the extraction of the target metal ions by GO-silica composite coated HF-SPME have been investigated carefully. Under the optimum conditions, the limits of detection (LODs, 3σ) for Mn, Co, Ni, Cu, Cd and Pb were 7.5, 0.39, 20, 23, 6.7 and 28 ng L(-1) and the relative standard deviations (RSDs, c(Mn, Co, Cd)=0.05 μg L(-1), c(Ni, Cu, Pb)=0.2 μg L(-1), n=7) were 7.2, 7.0, 5.6, 7.3, 7.8 and 4.6%, respectively. The accuracy of the proposed method was validated by the analysis of Certified Reference Material of GSBZ 50009-88 environmental water and the determined values were in a good agreement with the certified values. The proposed method has been successfully applied for the determination of trace metals in real environmental water samples with recoveries ranging from 85 to 119%.


Talanta | 2015

Simultaneous speciation analysis of inorganic arsenic, chromium and selenium in environmental waters by 3-(2-aminoethylamino) propyltrimethoxysilane modified multi-wall carbon nanotubes packed microcolumn solid phase extraction and ICP-MS

Hanyong Peng; Nan Zhang; Man He; Beibei Chen; Bin Hu

Speciation analysis of inorganic arsenic, chromium and selenium in environmental waters is of great significance for the monitoring of environmental pollution. In this work, 3-(2-aminoethylamino) propyltrimethoxysilane (AAPTS) functionalized multi-wall carbon nanotubes (MWCNTs) were synthesized and employed as the adsorbent for simultaneous speciation analysis of inorganic arsenic, chromium and selenium in environmental waters by microcolumn solid-phase extraction (SPE)-inductively coupled plasma mass spectrometry (ICP-MS). It was found that As(V), Cr(VI) and Se(VI) could be selectively adsorbed on the microcolumn packed with AAPTS-MWCNTs adsorbent at pH around 2.2, while As(III), Cr(III) and Se(IV) could not be retained at this pH and passed through the microcolumn directly. Total inorganic arsenic, chromium and selenium was determined after the oxidation of As(III), Cr(III) and Se(IV) to As(V), Cr(VI) and Se(VI) with 10.0 μmol L(-1) KMnO4. The assay of As(III), Cr(III) and Se(IV) was based on subtracting As(V), Cr(VI) and Se(VI) from the total As, Cr and Se, respectively. Under the optimized conditions, the detection limits of 15, 38 and 16 ng L(-1) with the relative standard deviations (RSDs) of 7.4, 2.4 and 6.2% (c=1 µg L(-1), n=7) were obtained for As(V), Cr(VI) and Se(VI), respectively. The developed method was validated by analyzing four Certified Reference Materials, rainwater, Yangtze River and East Lake waters.


Analytica Chimica Acta | 2009

Hollow fiber liquid phase microextraction combined with electrothermal atomic absorption spectrometry for the speciation of arsenic (III) and arsenic (V) in fresh waters and human hair extracts

Hongmei Jiang; Bin Hu; Beibei Chen; Linbo Xia

A new method of hollow fiber liquid phase microextraction (HF-LPME) using ammonium pyrrolidine dithiocarbamate (APDC) as extractant combined with electrothermal atomic absorption spectrometry (ETAAS) using Pd as permanent modifier has been described for the speciation of As(III) and As(V). In a pH range of 3.0-4.0, the complex of As(III)-APDC complex can be extracted using toluene as the extraction solvent leaving As(V) in the aqueous layer. The post extraction organic phase was directly injected into ETAAS for the determination of As(III). To determine total arsenic in the samples, first As(V) was reduced to As(III) by l-cysteine, and then a microextraction method was performed prior to the determination of total arsenic. As(V) assay was based on subtracting As(III) form the total arsenic. All parameters, such as pH of solution, type of organic solvent, the amount of APDC, stirring rate and extraction time, affecting the separation of As(III) from As(V) and the extraction efficiency of As(III) were investigated, and the optimized extraction conditions were established. Under optimized conditions, a detection limit of 0.12ngmL(-1) with enrichment factor of 78 was achieved. The relative standard deviation (R.S.D.) of the method for five replicate determinations of 5ngmL(-1) As(III) was 8%. The developed method was applied to the speciation of As(III) and As(V) in fresh water and human hair extracts, and the recoveries for the spiked samples are 86-109%. In order to validate the developed method, three certified reference materials such as GBW07601 human hair, BW3209 and BW3210 environmental water were analyzed, and the results obtained were in good agreement with the certified values provided.


Journal of Analytical Atomic Spectrometry | 2010

Magnetic solid phase microextraction on a microchip combined with electrothermal vaporization-inductively coupled plasma mass spectrometry for determination of Cd, Hg and Pb in cells

Beibei Chen; Shujing Heng; Hanyong Peng; Bin Hu; Xu Yu; Zhi-Ling Zhang; Dai-Wen Pang; Xin Yue; Ying Zhu

Quantitative analysis of trace levels of heavy metals in human cells is critical to environmental and toxicological research. We describe here a new strategy of determining ultratrace levels of cadmium, lead, and mercury in cultured cells. It involves the integration of cell sample introduction and magnetic nanoparticle solid phase microextraction (MSPME) on a microfluidic chip, combined with electrothermal vaporization-inductively coupled plasma mass spectrometry (ETV-ICP-MS) detection. γ-mercaptopropyltrimethoxysilane (γ-MPTS) modified silica-coated magnetic nanoparticles were synthesized and demonstrated for the microextraction of Cd, Pb, and Hg. Under an external magnetic field, these magnetic nanoparticles self-assembled in microchannels to form a solid phase packed column. The formation mechanism of the on-chip magnetic solid phase packed column and the main factors influencing the packing and analytical performance were investigated. Under the optimized conditions, MSPME enabled enrichment of Cd, Hg, and Pb by a factor of >40, and resulted in improved limits of detection for Cd (0.72 ng L−1), Hg (0.86 ng L−1), and Pb (1.12 ng L−1) using ETV-ICP-MS. Quantitative analyses of trace Cd, Hg and Pb in HepG2 cells were achieved by applying the microfluidic system that integrated cell rupture, mixing, magnetic extraction and elution into one device, followed by ultrasensitive detection by ETV-ICP-MS, which required only a microlitre amount of sample. Analysis of approximately 5000 cells revealed that the average amounts of Cd, Hg and Pb in a single HepG2 cell were of the order of a few femtograms, and that the cellular levels increased with increasing concentrations of these metals in cell cultures. The concentrations of Cd, Hg, and Pb detectable in HepG2 cells were several orders of magnitude lower than their IC50 values, suggesting that the technique is potentially useful for measuring these heavy metals in studies of chronic metal toxicity.


Journal of Chromatography A | 2013

Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to high performance liquid chromatography-ultraviolet detector for the determination of estrogens in environmental water samples

Cong Hu; Man He; Beibei Chen; Cheng Zhong; Bin Hu

In this work, three kinds of metal-organic frameworks (MOFs), MOF-5, MOF-199 and IRMOF-3, were introduced in stir bar sorptive extraction (SBSE) and novel polydimethylsiloxane (PDMS)/MOFs (including PDMS/MOF-5, PDMS/MOF-199 and PDMS/IRMOF-3) coated stir bars were prepared by sol-gel technique. These PDMS/MOFs coatings were characterized and critically compared for the extraction of seven target estrogens (17-β-estradiol, dienestrol, diethylstilbestrol, estrone, 4-t-octylphenol, bisphenol-A and 17α-ethynylestradiol) by SBSE, and the results showed that PDMS/IRMOF-3 exhibited highest extraction efficiency. Based on the above facts, a novel method of PDMS/IRMOF-3 coating SBSE-high performance liquid chromatography ultraviolet (HPLC-UV) detection was developed for the determination of seven target estrogens in environmental waters. Several parameters affecting extraction of seven target estrogens by SBSE (PDMS/IRMOF-3) including extraction time, stirring rate, pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.15-0.35 μg/L. The linear range was 2-2,500 μg/L for 17α-ethynylestradiol and 1-2,500 μg/L for other estrogens. The relative standard deviations (RSDs) were in the range of 3.7-9.9% (n=8, c=20 μg/L) and the enrichment factors were from 30.3 to 55.6-fold (theoretical enrichment factor was 100-fold). The proposed method was successfully applied to the analysis of estrogens in environmental water samples, and quantitative recoveries were obtained for the spiking experiments.


Analytical and Bioanalytical Chemistry | 2015

Nanometer-sized materials for solid-phase extraction of trace elements

Bin Hu; Man He; Beibei Chen

AbstractThis review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal–organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far. Graphical AbstractNanometer-sized materials for solid-phaseextraction of trace elements and their species


Biomaterials | 2013

Cellular uptake, elimination and toxicity of CdSe/ZnS quantum dots in HepG2 cells.

Lu Peng; Man He; Beibei Chen; Qiu-Mei Wu; Zhi-Ling Zhang; Dai-Wen Pang; Ying Zhu; Bin Hu

In this work, the cellular uptake, elimination and toxicity of CdSe/ZnS QDs in HepG2 cells were comprehensively studied using inductively coupled plasma mass spectrometry (ICP-MS), MTT assay, AO/EB staining, and glutathione level and gene expression analysis. ICP-MS analytical results showed that the uptake efficiency of CdSe QDs by HepG2 cells was lower than that of Cd(II) and Se(IV), and the uptake was dose- and time-dependent. The uptake amount was related to the physicochemical properties of QDs, and NH2-QDs with smaller size were more easily taken up by cells. In combination with various biochemical methodologies, a systematic and thorough quantitative analysis of the in vitro effects of CdSe/ZnS QDs with different coatings was conducted, along with that of Cd (II) and Se (IV). Although Cd(II) above 8.9 μM exhibited obvious toxicity to the cells, no obvious toxicity of four CdSe/ZnS QDs was observed within the tested concentration range (10-100 nM), most likely due to the protection of the ZnS shell and the PEG coating. From the molecular levels point of view, QDs at concentration of 100 nM exhibit obvious impact on the cells, such as increased gene expression (MT1A and CYP1A1), which was positively correlated with the intracellular concentration of QDs.


Talanta | 2014

Determination of trace/ultratrace rare earth elements in environmental samples by ICP-MS after magnetic solid phase extraction with Fe3O4@SiO2@polyaniline–graphene oxide composite

Shaowei Su; Beibei Chen; Man He; Bin Hu; Zuowei Xiao

A novel Fe3O4@SiO2@polyaniline-graphene oxide composite (MPANI-GO) was prepared through a simple noncovalent method and applied to magnetic solid phase extraction (MSPE) of trace rare earth elements (REEs) in tea leaves and environmental water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The prepared MPANI-GO was characterized by transmission electron microscopy and vibrating sample magnetometer. Various parameters affecting MPANI-GO MSPE of REEs have been investigated. Under the optimized conditions, the limits of detection (LODs, 3σ) for REEs were in the range of 0.04-1.49 ng L(-1) and the relative standard deviations (RSDs, c=20 ng L(-1), n=7) were 1.7-6.5%. The accuracy of the proposed method was validated by analyzing a Certified Reference Material of GBW 07605 tea leaves. The method was also successfully applied for the determination of trace REEs in tea leaves and environmental water samples. The developed MPANI-GO MSPE-ICP-MS method has the advantages of simplicity, rapidity, high sensitivity, high enrichment factor and is suitable for the analysis of trace REEs in samples with complex matrix.


Talanta | 2016

Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples

Shishuai Ma; Man He; Beibei Chen; Wenchao Deng; Qi Zheng; Bin Hu

In this work, γ-mercaptopropyltrimethoxysilane (γ-MPTS) modified Fe3O4@SiO2 magnetic nanoparticles (MNPs) was successfully prepared, and characterized by Fourier transform infrared spectrometer (FT-IR), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM). The sorption performance of the prepared Fe3O4@SiO2@γ-MPTS MNPs towards methylmercury (CH3Hg(+)) and inorganic mercury (Hg(2+)) was investigated. It was found that CH3Hg(+) and Hg(2+) could be simultaneously retained on the prepared Fe3O4@SiO2@γ-MPTS MNPs, and the quantitative elution of CH3Hg(+) and total mercury (THg) was achieved by using 1.5 mol L(-1) HCl containing 0.01% and 3% thiourea (m/v), respectively. And the levels of Hg(2+) were obtained by subtracting CH3Hg(+) from THg. Based on the above facts, a method of magnetic solid phase extraction (MSPE) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the speciation of CH3Hg(+) and Hg(2+). Various experimental parameters affecting MSPE of CH3Hg(+) and Hg(2+) such as pH, eluent, sample volume, and co-existing ions have been studied. Under the optimized conditions, the limits of detection (LODs) for CH3Hg(+) and THg were 1.6 and 1.9 ng L(-1), respectively. The accuracy of the proposed method was validated by analysis of a Certified Reference Material NRCC DORM-2 dogfish muscle, and the determined values are in good agreement with the certified values. The proposed method has also been successfully applied for the speciation of CH3Hg(+) and Hg(2+) in environmental water and human hair samples.


Journal of Materials Chemistry | 2015

A designable magnetic MOF composite and facile coordination-based post-synthetic strategy for the enhanced removal of Hg2+ from water

Lijin Huang; Man He; Beibei Chen; Bin Hu

A magnetic MOF composite was successfully prepared by a novel and green strategy through reasonable design. The nano Fe3O4@SiO2 core was first coated by a shell of Cu(OH)2 as the self-template, followed by a conversion of Cu(OH)2 into HKUST-1 at room temperature in a water–ethanol mixture solvent, and Fe3O4@SiO2@HKUST-1 core–shell nanostructures were obtained successfully. Based on this, a Bi-I-functionalized-magnetic HKUST-1 composite was prepared through a flexible coordination-based post-synthetic strategy. Powder X-ray diffraction spectrometry, N2 sorption–desorption isotherms and Fourier transform infrared spectroscopy were used for the characterization of the magnetic MOF composites. The core–shell morphology was confirmed by transmission electron microscope images and the result of thermogravimetric analysis showed that the magnetic composites had excellent thermal stability. Besides, the adsorption of Hg2+ on Fe3O4@SiO2, Fe3O4@SiO2@HKUST-1 and Bi-I-functionalized magnetic MOF composites was investigated, and a good adsorption selectivity of Bi-I-functionalized magnetic MOF composites towards Hg2+ was demonstrated, with high adsorption capacity (264 mg g−1) and fast adsorption dynamics. The Bi-I-functionalized magnetic HKUST-1 composite was then successfully employed for the selective removal of Hg2+ from water, demonstrating great potential application of the prepared magnetic MOF composite as a fascinating adsorbent in environmental monitoring.

Collaboration


Dive into the Beibei Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge