Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beihua Dong is active.

Publication


Featured researches published by Beihua Dong.


The EMBO Journal | 1997

Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L

Aimin Zhou; Jayashree M. Paranjape; Thomas L. Brown; Huiqin Nie; Sharon Naik; Beihua Dong; Ansi Chang; Bruce D. Trapp; Robert L. Fairchild; Clemencia Colmenares; Robert H. Silverman

2′,5′‐Oligoadenylate‐dependent RNase L functions in the interferon‐inducible, RNA decay pathway known as the 2‐5A system. To determine the physiological roles of the 2‐5A system, mice were generated with a targeted disruption of the RNase L gene. The antiviral effect of interferon α was impaired in RNase L−/− mice providing the first evidence that the 2‐5A system functions as an antiviral pathway in animals. In addition, remarkably enlarged thymuses in the RNase L−/− mice resulted from a suppression of apoptosis. There was a 2‐fold decrease in apoptosis in vivo in the thymuses and spleens of RNase L−/− mice. Furthermore, apoptosis was substantially suppressed in RNase L−/− thymocytes and fibroblasts treated with different apoptotic agents. These results suggest that both interferon action and apoptosis can be controlled at the level of RNA stability by RNase L. Another implication is that the 2‐5A system is likely to contribute to the antiviral activity of interferon by inducing apoptosis of infected cells.


Nature | 2007

Small self-RNA generated by RNase L amplifies antiviral innate immunity

Krishnamurthy Malathi; Beihua Dong; Michael Gale; Robert H. Silverman

Antiviral innate immunity is initiated in response to RNA molecules that are produced in virus-infected cells. These RNAs activate signalling cascades that activate the genes that encode α- and β-interferon (IFN). Signalling occurs through the interaction of the RNAs with either of two pathogen recognition receptors, retinoic acid-inducible gene-I (RIG-I, also known as DDX58) and melanoma differentiation associated gene-5 (MDA5, also known as IFIH1), which contain amino-terminal caspase activation and recruitment domains (CARD) and carboxy-terminal DExD/H Box RNA helicase motifs. RIG-I and MDA5 interact with another CARD protein, interferon-β promotor stimulator protein-1 (IPS-1, also known as MAVS, VISA and Cardif), in the mitochondrial membrane, which relays the signal through the transcription factors interferon regulatory factor 3 (IRF-3) and nuclear factor (NF)-κB to the IFN-β gene. Although the signalling pathway is well understood, the origin of the RNA molecules that initiate these processes is not. Here we show that activation of the antiviral endoribonuclease, RNase L, by 2′,5′-linked oligoadenylate (2-5A) produces small RNA cleavage products from self-RNA that initiate IFN production. Accordingly, mouse embryonic fibroblasts lacking RNase L were resistant to the induction of IFN-β expression in response to 2-5A, dsRNA or viral infection. Single-stranded regions of RNA are cleaved 3′ of UpUp and UpAp sequences by RNase L during viral infections, resulting in small, often duplex, RNAs. We show that small self-RNAs produced by the action of RNase L on cellular RNA induce IFN-β expression and that the signalling involves RIG-I, MDA5 and IPS-1. Mice lacking RNase L produce significantly less IFN-β during viral infections than infected wild-type mice. Furthermore, activation of RNase L with 2-5A in vivo induced the expression of IFN-β in wild-type but not RNase L-deficient mice. Our results indicate that RNase L has an essential role in the innate antiviral immune response that relieves the requirement for direct sensing of non-self RNA.


Proceedings of the National Academy of Sciences of the United States of America | 2007

An infectious retrovirus susceptible to an IFN antiviral pathway from human prostate tumors

Beihua Dong; Sanggu Kim; Seunghee Hong; Jaydip Das Gupta; Krishnamurthy Malathi; Eric A. Klein; Don Ganem; Joseph L. DeRisi; Samson A. Chow; Robert H. Silverman

We recently reported identification of a previously undescribed gammaretrovirus genome, xenotropic murine leukemia virus-related virus (XMRV), in prostate cancer tissue from patients homozygous for a reduced activity variant of the antiviral enzyme RNase L. Here we constructed a full-length XMRV genome from prostate tissue RNA and showed that the molecular viral clone is replication-competent. XMRV replication in the prostate cancer cell line DU145 was sensitive to inhibition by IFN-β. However, LNCaP prostate cancer cells, which are deficient in JAK1 and RNase L, were resistant to the effects of IFN-β against XMRV. Furthermore, DU145 cells rendered deficient in RNase L with siRNA were partially resistant to IFN inhibition of XMRV. Expression in hamster cells of the xenotropic and polytropic retrovirus receptor 1 allowed these cells to be infected by XMRV. XMRV provirus integration sites were mapped in DNA isolated from human prostate tumor tissue to genes for two transcription factors (NFATc3 and CREB5) and to a gene encoding a suppressor of androgen receptor transactivation (APPBP2/PAT1/ARA67). Our studies demonstrate that XMRV is a virus that has infected humans and is susceptible to inhibition by IFN and its downstream effector, RNase L.


Journal of Virology | 2008

Integration Site Preference of Xenotropic Murine Leukemia Virus-Related Virus, a New Human Retrovirus Associated with Prostate Cancer

Sanggu Kim; Namshin Kim; Beihua Dong; David Boren; Serena A. Lee; Jaydip Das Gupta; Christina Gaughan; Eric A. Klein; Christopher Lee; Robert H. Silverman; Samson A. Chow

ABSTRACT Xenotropic murine leukemia virus-related virus (XMRV) is a new human gammaretrovirus identified in prostate cancer tissue from patients homozygous for a reduced-activity variant of the antiviral enzyme RNase L. Neither a casual relationship between XMRV infection and prostate cancer nor a mechanism of tumorigenesis has been established. To determine the integration site preferences of XMRV and the potential risk of proviral insertional mutagenesis, we carried out a genome-wide analysis of viral integration sites in the prostate cell line DU145 after an acute XMRV infection and compared the integration site pattern of XMRV with those found for murine leukemia virus and two human retroviruses, human immunodeficiency virus type 1 and human T-cell leukemia virus type 1. Among all retroviruses analyzed, XMRV has the strongest preference for transcription start sites, CpG islands, DNase-hypersensitive sites, and gene-dense regions; all are features frequently associated with structurally open transcription regulatory regions of a chromosome. Analyses of XMRV integration sites in tissues from prostate cancer patients found a similar preference for the aforementioned chromosomal features. Additionally, XMRV integration sites in cancer tissues were associated with cancer breakpoints, common fragile sites, microRNA, and cancer-related genes, suggesting a selection process that favors certain chromosomal integration sites. In both acutely infected cells and cancer tissues, no common integration site was detected within or near proto-oncogenes or tumor suppressor genes. These results are consistent with a model in which XMRV may contribute to tumorigenicity via a paracrine mechanism.


Journal of Biological Chemistry | 1997

A Bipartite Model of 2-5A-dependent RNase L

Beihua Dong; Robert H. Silverman

The 2-5A-dependent RNase (RNase L) is a tightly regulated endoribonuclease of higher vertebrates that is catalytically active only after engaging unusual effector molecules consisting of the 2′,5′-linked oligoadenylates, p1–3A(2′p5′A)≥2 (2-5A). Progressive truncations from either terminus have provided insight into the structure, function, and regulation of RNase L. We determined that deletion of the N-terminal 335 amino acids of RNase L, about 45% of the enzyme, produced a constitutively active endoribonuclease, thus effectively eliminating the requirement for 2-5A. The truncated nuclease had 6-fold lower catalytic activity against an oligo(rU) substrate than wild type RNase L. However, the two enzymes showed identical RNA cleavage site preferences with an mRNA as substrate. The repressor function required only the last three of a series of nine ankyrin-like repeats present in the N-terminal part of RNase L. In contrast, the entire ankyrin repeat region was necessary and sufficient for 2-5A binding activity. Deletion of a 10-amino acid sequence near the C terminus of RNase L, between residues 710 and 720, eliminated both the catalytic and RNA substrate binding functions of the enzyme. The ability to bind native RNase L in response to 2-5A required amino acid sequences near both termini of the protein. A bipartite model for the structure of RNase L emerged in which the regulatory functions of the molecule are located in the N-terminal half, while the catalytic domain is present in the C-terminal half.


Journal of Virology | 2004

Phospholipid Scramblase 1 Potentiates the Antiviral Activity of Interferon

Beihua Dong; Quansheng Zhou; Ji Zhao; Aimin Zhou; Ronald N. Harty; Santanu Bose; Amiya K. Banerjee; Roger Slee; Jeanna M. Guenther; Bryan R. G. Williams; Therese Wiedmer; Peter J. Sims; Robert H. Silverman

ABSTRACT Phospholipid scramblase 1 (PLSCR1) is an interferon (IFN)- and growth factor-inducible, calcium-binding protein that either inserts into the plasma membrane or binds DNA in the nucleus depending on its state of palmyitoylation. In certain hematopoietic cells, PLSCR1 is required for normal maturation and terminal differentiation from progenitor cells as regulated by select growth factors, where it promotes recruitment and activation of Src kinases. PLSCR1 is a substrate of Src (and Abl) kinases, and transcription of the PLSCR1 gene is regulated by the same growth factor receptor pathways in which PLSCR1 potentiates afferent signaling. The marked transcriptional upregulation of PLSCR1 by IFNs led us to explore whether PLSCR1 plays an analogous role in cellular responses to IFN, with specific focus on antiviral activities. Accordingly, human cells in which PLSCR1 expression was decreased with short interfering RNA were rendered relatively insensitive to the antiviral activity of IFNs, resulting in higher titers of vesicular stomatitis virus (VSV) and encephalomyocarditis virus. Similarly, VSV replicated to higher titers in mouse PLSCR1−/− embryonic fibroblasts than in identical cells transduced to express PLSCR1. PLSCR1 inhibited accumulation of primary VSV transcripts, similar to the effects of IFN against VSV. The antiviral effect of PLSCR1 correlated with increased expression of a subset of IFN-stimulated genes (ISGs), including ISG15, ISG54, p56, and guanylate binding proteins. Our results suggest that PLSCR1, which is itself an ISG-encoded protein, provides a mechanism for amplifying and enhancing the IFN response through increased expression of a select subset of potent antiviral genes.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Homologous 2′,5′-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity

Rong Zhang; Babal Kant Jha; Kristen M. Ogden; Beihua Dong; Ling Zhao; Ruth Elliott; John T. Patton; Robert H. Silverman; Susan R. Weiss

Efficient and productive virus infection often requires viral countermeasures that block innate immunity. The IFN-inducible 2′,5′-oligoadenylate (2-5A) synthetases (OASs) and ribonuclease (RNase) L are components of a potent host antiviral pathway. We previously showed that murine coronavirus (MHV) accessory protein ns2, a 2H phosphoesterase superfamily member, is a phosphodiesterase (PDE) that cleaves 2-5A, thereby preventing activation of RNase L. The PDE activity of ns2 is required for MHV replication in macrophages and for hepatitis. Here, we show that group A rotavirus (RVA), an important cause of acute gastroenteritis in children worldwide, encodes a similar PDE. The RVA PDE forms the carboxy-terminal domain of the minor core protein VP3 (VP3-CTD) and shares sequence and predicted structural homology with ns2, including two catalytic HxT/S motifs. Bacterially expressed VP3-CTD exhibited 2′,5′-PDE activity, which cleaved 2-5A in vitro. In addition, VP3-CTD expressed transiently in mammalian cells depleted 2-5A levels induced by OAS activation with poly(rI):poly(rC), preventing RNase L activation. In the context of recombinant chimeric MHV expressing inactive ns2, VP3-CTD restored the ability of the virus to replicate efficiently in macrophages or in the livers of infected mice, whereas mutant viruses expressing inactive VP3-CTD (H718A or H798R) were attenuated. In addition, chimeric viruses expressing either active ns2 or VP3-CTD, but not nonfunctional equivalents, were able to protect ribosomal RNA from RNase L–mediated degradation. Thus, VP3-CTD is a 2′,5′-PDE able to functionally substitute for ns2 in MHV infection. Remarkably, therefore, two disparate RNA viruses encode proteins with homologous 2′,5′-PDEs that antagonize activation of innate immunity.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Small-molecule activators of RNase L with broad-spectrum antiviral activity

Chandar Singh Thakur; Babal Kant Jha; Beihua Dong; Jaydip Das Gupta; Kenneth M. Silverman; Hongxia Mao; Hiro Sawai; Akiko Nakamura; Amiya K. Banerjee; Andrei V. Gudkov; Robert H. Silverman

RNase L, a principal mediator of innate immunity to viral infections in higher vertebrates, is required for a complete IFN antiviral response against certain RNA stranded viruses. dsRNA produced during viral infections activates IFN-inducible synthetases that produce 5′-phosphorylated, 2′,5′-oligoadenylates (2-5A) from ATP. 2-5A activates RNase L in a wide range of different mammalian cell types, thus blocking viral replication. However, 2-5A has unfavorable pharmacologic properties; it is rapidly degraded, does not transit cell membranes, and leads to apoptosis. To obtain activators of RNase L with improved drug-like properties, high-throughput screening was performed on chemical libraries by using fluorescence resonance energy transfer. Seven compounds were obtained that activated RNase L at micromolar concentrations, and structure–activity relationship studies resulted in identification of an additional four active compounds. Two lead compounds were shown to have a similar mechanistic path toward RNase L activation as the natural activator 2-5A. The compounds bound to the 2-5A-binding domain of RNase L (as determined by surface plasmon resonance and confirmed by computational docking), and the compounds induced RNase L dimerization and activation. Interestingly, the low-molecular-weight activators of RNase L had broad-spectrum antiviral activity against diverse types of RNA viruses, including the human pathogen human parainfluenza virus type 3, yet these compounds by themselves were not cytotoxic at the effective concentrations. Therefore, these RNase L activators are prototypes for a previously uncharacterized class of broad-spectrum antiviral agents.


Journal of Virology | 2011

Infection, Viral Dissemination, and Antibody Responses of Rhesus Macaques Exposed to the Human Gammaretrovirus XMRV

Nattawat Onlamoon; Jaydip Das Gupta; Prachi Sharma; Kenneth Rogers; Suganthi Suppiah; Jeanne M. Rhea; Ross J. Molinaro; Christina Gaughan; Beihua Dong; Eric A. Klein; Xiaoxing Qiu; Sushil G. Devare; Gerald Schochetman; John Hackett; Robert H. Silverman; Francois Villinger

ABSTRACT Xenotropic murine leukemia-related virus (XMRV) was identified in association with human prostate cancer and chronic fatigue syndrome. To examine the infection potential, kinetics, and tissue distribution of XMRV in an animal model, we inoculated five macaques with XMRV intravenously. XMRV established a persistent, chronic disseminated infection, with low transient viremia and provirus in blood lymphocytes during acute infection. Although undetectable in blood after about a month, XMRV viremia was reactivated at 9 months, confirming the chronicity of the infection. Furthermore, XMRV Gag was detected in tissues throughout, with wide dissemination throughout the period of monitoring. Surprisingly, XMRV infection showed organ-specific cell tropism, infecting CD4 T cells in lymphoid organs including the gastrointestinal lamina propria, alveolar macrophages in lung, and epithelial/interstitial cells in other organs, including the reproductive tract. Of note, in spite of the intravenous inoculation, extensive XMRV replication was noted in prostate during acute but not chronic infection even though infected cells were still detectable by fluorescence in situ hybridization (FISH) in prostate at 5 and 9 months postinfection. Marked lymphocyte activation occurred immediately postinfection, but antigen-specific cellular responses were undetectable. Antibody responses were elicited and boosted upon reexposure, but titers decreased rapidly, suggesting low antigen stimulation over time. Our findings establish a nonhuman primate model to study XMRV replication/dissemination, transmission, pathogenesis, immune responses, and potential future therapies.


Journal of Biological Chemistry | 2011

Inhibition of RNase L and RNA-dependent protein kinase (PKR) by sunitinib impairs antiviral innate immunity.

Babal Kant Jha; Irina Polyakova; Patricia M. Kessler; Beihua Dong; Benjamin K. Dickerman; Ganes C. Sen; Robert H. Silverman

RNase L and RNA-dependent protein kinase (PKR) are effectors of the interferon antiviral response that share homology in their pseudokinase and protein kinase domains, respectively. Sunitinib is an orally available, ATP-competitive inhibitor of VEGF and PDGF receptors used clinically to suppress angiogenesis and tumor growth. Sunitinib also impacts IRE1, an endoplasmic reticulum protein involved in the unfolded protein response that is closely related to RNase L. Here, we report that sunitinib is a potent inhibitor of both RNase L and PKR with IC50 values of 1.4 and 0.3 μm, respectively. In addition, flavonol activators of IRE1 inhibited RNase L. Sunitinib treatment of wild type (WT) mouse embryonic fibroblasts resulted in about a 12-fold increase in encephalomyocarditis virus titers. However, sunitinib had no effect on encephalomyocarditis virus growth in cells lacking both PKR and RNase L. Furthermore, oral delivery of sunitinib in WT mice resulted in 10-fold higher viral titers in heart tissues while suppressing by about 2-fold the IFN-β levels. In contrast, sunitinib had no effect on viral titers in mice deficient in both RNase L and PKR. Also, sunitinib reduced mean survival times from 12 to 6 days in virus-infected WT mice while having no effect on survival of mice lacking both RNase L and PKR. Results indicate that sunitinib treatments prevent antiviral innate immune responses mediated by RNase L and PKR.

Collaboration


Dive into the Beihua Dong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul F. Torrence

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aimin Zhou

Cleveland State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Xiao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bryan R. G. Williams

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge