Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Belete Ayele Desimmie is active.

Publication


Featured researches published by Belete Ayele Desimmie.


Nature Chemical Biology | 2010

Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication

Frauke Christ; Arnout Voet; Arnaud Marchand; Stefan Nicolet; Belete Ayele Desimmie; Damien Marchand; Dorothée Bardiot; Nam Joo Van der Veken; Barbara Van Remoortel; Sergei V. Strelkov; Marc De Maeyer; Patrick Chaltin; Zeger Debyser

Lens epithelium-derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase that promotes viral integration by tethering the preintegration complex to the chromatin. By virtue of its crucial role in the early steps of HIV replication, the interaction between LEDGF/p75 and integrase represents an attractive target for antiviral therapy. We have rationally designed a series of 2-(quinolin-3-yl)acetic acid derivatives (LEDGINs) that act as potent inhibitors of the LEDGF/p75-integrase interaction and HIV-1 replication at submicromolar concentration by blocking the integration step. A 1.84-A resolution crystal structure corroborates the binding of the inhibitor in the LEDGF/p75-binding pocket of integrase. Together with the lack of cross-resistance with two clinical integrase inhibitors, these findings define the 2-(quinolin-3-yl)acetic acid derivatives as the first genuine allosteric HIV-1 integrase inhibitors. Our work demonstrates the feasibility of rational design of small molecules inhibiting the protein-protein interaction between a viral protein and a cellular host factor.


Antimicrobial Agents and Chemotherapy | 2012

Small-Molecule Inhibitors of the LEDGF/p75 Binding Site of Integrase Block HIV Replication and Modulate Integrase Multimerization

Frauke Christ; Stephen M. Shaw; Jonas Demeulemeester; Belete Ayele Desimmie; Arnaud Marchand; Scott D. Butler; Wim Smets; Patrick Chaltin; Mike Westby; Zeger Debyser; Chris Pickford

ABSTRACT Targeting the HIV integrase (HIV IN) is a clinically validated approach for designing novel anti-HIV therapies. We have previously described the discovery of a novel class of integration inhibitors, 2-(quinolin-3-yl)acetic acid derivatives, blocking HIV replication at a low micromolar concentration through binding in the LEDGF/p75 binding pocket of HIV integrase, hence referred to as LEDGINs. Here we report the detailed characterization of their mode of action. The design of novel and more potent analogues with nanomolar activity enabled full virological evaluation and a profound mechanistic study. As allosteric inhibitors, LEDGINs bind to the LEDGF/p75 binding pocket in integrase, thereby blocking the interaction with LEDGF/p75 and interfering indirectly with the catalytic activity of integrase. Detailed mechanism-of-action studies reveal that the allosteric mode of inhibition is likely caused by an effect on HIV-1 integrase oligomerization. The multimodal inhibition by LEDGINs results in a block in HIV integration and in a replication deficiency of progeny virus. The allosteric nature of LEDGINs leads to synergy in combination with the clinically approved active site HIV IN strand transfer inhibitor (INSTI) raltegravir, and cross-resistance profiling proves the distinct mode of action of LEDGINs and INSTIs. The allosteric nature of inhibition and compatibility with INSTIs underline an interest in further (clinical) development of LEDGINs.


Retrovirology | 2013

LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions

Belete Ayele Desimmie; Rik Schrijvers; Jonas Demeulemeester; Doortje Borrenberghs; Caroline Weydert; Wannes Thys; Sofie Vets; Barbara Van Remoortel; Johan Hofkens; Jan De Rijck; Jelle Hendrix; Norbert Bannert; Rik Gijsbers; Frauke Christ; Zeger Debyser

BackgroundLEDGINs are novel allosteric HIV integrase (IN) inhibitors that target the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. They block HIV-1 integration by abrogating the interaction between LEDGF/p75 and IN as well as by allosterically inhibiting the catalytic activity of IN.ResultsHere we demonstrate that LEDGINs reduce the replication capacity of HIV particles produced in their presence. We systematically studied the molecular basis of this late effect of LEDGINs and demonstrate that HIV virions produced in their presence display a severe replication defect. Both the late effect and the previously described, early effect on integration contribute to LEDGIN antiviral activity as shown by time-of-addition, qPCR and infectivity assays. The late effect phenotype requires binding of LEDGINs to integrase without influencing proteolytic cleavage or production of viral particles. LEDGINs augment IN multimerization during virion assembly or in the released viral particles and severely hamper the infectivity of progeny virions. About 70% of the particles produced in LEDGIN-treated cells do not form a core or display aberrant empty cores with a mislocalized electron-dense ribonucleoprotein. The LEDGIN-treated virus displays defective reverse transcription and nuclear import steps in the target cells. The LEDGIN effect is possibly exerted at the level of the Pol precursor polyprotein.ConclusionOur results suggest that LEDGINs modulate IN multimerization in progeny virions and impair the formation of regular cores during the maturation step, resulting in a decreased infectivity of the viral particles in the target cells. LEDGINs thus profile as unique antivirals with combined early (integration) and late (IN assembly) effects on the HIV replication cycle.


Molecular Therapy | 2012

Phage Display-directed Discovery of LEDGF/p75 Binding Cyclic Peptide Inhibitors of HIV Replication

Belete Ayele Desimmie; Michael Humbert; Eveline Lescrinier; Jelle Hendrix; Sofie Vets; Rik Gijsbers; Ruth M. Ruprecht; Ursula Dietrich; Zeger Debyser; Frauke Christ

The interaction between the human immunodeficiency virus (HIV) integrase (IN) and its cellular cofactor lens epithelium-derived growth factor (LEDGF/p75) is crucial for HIV replication. While recently discovered LEDGINs inhibit HIV-1 replication by occupying the LEDGF/p75 pocket in IN, it remained to be demonstrated whether LEDGF/p75 by itself can be targeted. By phage display we identified cyclic peptides (CPs) as the first LEDGF/p75 ligands that inhibit the LEDGF/p75-IN interaction. The CPs inhibit HIV replication in different cell lines without overt toxicity. In accord with the role of LEDGF/p75 in HIV integration and its inhibition by LEDGINs, CP64, and CP65 block HIV replication primarily by inhibiting the integration step. The CPs retained activity against HIV strains resistant to raltegravir or LEDGINs. Saturation transfer difference (STD) NMR showed residues in CP64 that strongly interact with LEDGF/p75 but not with HIV IN. Mutational analysis identified tryptophan as an important residue responsible for the activity of the peptides. Serial passaging of virus in the presence of CPs did not yield resistant strains. Our work provides proof-of-concept for direct targeting of LEDGF/p75 as novel therapeutic strategy and the CPs thereby serve as scaffold for future development of new HIV therapeutics.


Molecular Biology International | 2012

Cellular cofactors of lentiviral integrase: from target validation to drug discovery

Oliver Taltynov; Belete Ayele Desimmie; Jonas Demeulemeester; Frauke Christ; Zeger Debyser

To accomplish their life cycle, lentiviruses make use of host proteins, the so-called cellular cofactors. Interactions between host cell and viral proteins during early stages of lentiviral infection provide attractive new antiviral targets. The insertion of lentiviral cDNA in a host cell chromosome is a step of no return in the replication cycle, after which the host cell becomes a permanent carrier of the viral genome and a producer of lentiviral progeny. Integration is carried out by integrase (IN), an enzyme playing also an important role during nuclear import. Plenty of cellular cofactors of HIV-1 IN have been proposed. To date, the lens epithelium-derived growth factor (LEDGF/p75) is the best studied cofactor of HIV-1 IN. Moreover, small molecules that block the LEDGF/p75-IN interaction have recently been developed for the treatment of HIV infection. The nuclear import factor transportin-SR2 (TRN-SR2) has been proposed as another interactor of HIV IN-mediating nuclear import of the virus. Using both proteins as examples, we will describe approaches to be taken to identify and validate novel cofactors as new antiviral targets. Finally, we will highlight recent advances in the design and the development of small-molecule inhibitors binding to the LEDGF/p75-binding pocket in IN (LEDGINs).


ACS Chemical Biology | 2013

2-Hydroxyisoquinoline-1,3(2H,4H)-diones (HIDs), novel inhibitors of HIV integrase with a high barrier to resistance.

Belete Ayele Desimmie; Jonas Demeulemeester; Virginie Suchaud; Oliver Taltynov; Muriel Billamboz; Cédric Lion; Fabrice Bailly; Sergei V. Strelkov; Zeger Debyser; Philippe Cotelle; Frauke Christ

Clinical HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) potently inhibit viral replication with a dramatic drop in viral load. However, the emergence of resistance to these drugs underscores the need to develop next-generation IN catalytic site inhibitors with improved resistance profiles. Here, we present a novel candidate IN inhibitor, MB-76, a 2-hydroxyisoquinoline-1,3(2H,4H)-dione (HID) derivative. MB-76 potently blocks HIV integration and is active against a panel of wild-type as well as raltegravir-resistant HIV-1 variants. The lack of cross-resistance with other INSTIs and the absence of resistance selection in cell culture indicate the potential of HID derivatives compared to previous INSTIs. A crystal structure of MB-76 bound to the wild-type prototype foamy virus intasome reveals an overall binding mode similar to that of INSTIs. Its compact scaffold displays all three Mg(2+) chelating oxygen atoms from a single ring, ensuring that the only direct contacts with IN are the invariant P214 and Q215 residues of PFV IN (P145 and Q146 for HIV-1 IN, respectively), which may partially explain the difficulty of selecting replicating resistant variants. Moreover, the extended, dolutegravir-like linker connecting the MB-76 metal chelating core and p-fluorobenzyl group can provide additional flexibility in the perturbed active sites of raltegravir-resistant INs. The compound identified represents a potential candidate for further (pre)clinical development as next-generation HIV IN catalytic site inhibitor.


Retrovirology | 2015

HIV-1 IN/Pol recruits LEDGF/p75 into viral particles

Belete Ayele Desimmie; Caroline Weydert; Rik Schrijvers; Sofie Vets; Jonas Demeulemeester; Paul Proost; Igor Paron; Jan De Rijck; Jan Mast; Norbert Bannert; Rik Gijsbers; Frauke Christ; Zeger Debyser

BackgroundThe dynamic interaction between HIV and its host governs the replication of the virus and the study of the virus-host interplay is key to understand the viral lifecycle. The host factor lens epithelium-derived growth factor (LEDGF/p75) tethers the HIV preintegration complex to the chromatin through a direct interaction with integrase (IN). Small molecules that bind the LEDGF/p75 binding pocket of the HIV IN dimer (LEDGINs) block HIV replication through a multimodal mechanism impacting early and late stage replication including HIV maturation. Furthermore, LEDGF/p75 has been identified as a Pol interaction partner. This raised the question whether LEDGF/p75 besides acting as a molecular tether in the target cell, also affects late steps of HIV replication.ResultsLEDGF/p75 is recruited into HIV-1 particles through direct interaction with the viral IN (or Pol polyprotein) and is a substrate for HIV-1 protease. Incubation in the presence of HIV-1 protease inhibitors resulted in detection of full-length LEDGF/p75 in purified viral particles. We also demonstrate that inhibition of LEDGF/p75-IN interaction by specific mutants or LEDGINs precludes incorporation of LEDGF/p75 in virions, underscoring the specificity of the uptake. LEDGF/p75 depletion did however not result in altered LEDGIN potency.ConclusionTogether, these results provide evidence for an IN/Pol mediated uptake of LEDGF/p75 in viral particles and a specific cleavage by HIV protease. Understanding of the possible role of LEDGF/p75 or its cleavage fragments in the viral particle awaits further experimentation.


Drug Discovery Today: Technologies | 2013

Rational design of LEDGINs as first allosteric integrase inhibitors for the treatment of HIV infection

Belete Ayele Desimmie; Jonas Demeulemeester; Frauke Christ; Zeger Debyser

The interaction between lens epithelium-derived growth factor (LEDGF/p75) and HIV-1 integrase (IN) is an attractive target for antiviral development because its inhibition blocks HIV replication. Developing novel small molecules that disrupt the LEDGF/p75-IN interaction constitutes a promising new therapeutic strategy for the treatment of HIV. Here we will highlight recent advances in the design and development of small-molecule inhibitors binding to the LEDGF/p75 binding pocket of IN, referred to as LEDGINs.


MedChemComm | 2014

Validation of host factors of HIV integration as novel drug targets for anti-HIV therapy

Zeger Debyser; Belete Ayele Desimmie; Oliver Taltynov; Jonas Demeulemeester; Frauke Christ

There is continuous demand to search for novel and better antiretrovirals for a better control of the HIV pandemic with the hope of eventually inducing permanent remission of the disease. HIV relies on the host cellular machinery to complete its replication cycle. HIV hijacks several biological processes and protein complexes of the host cell through distinct virus–host protein–protein interactions (PPIs). Interactions between host cell and viral proteins during different stages of lentiviral infection can provide attractive new antiviral targets. These PPIs represent an attractive group of biologically relevant targets for the development of small molecule protein–protein interaction inhibitors (SMIPPIs). The insertion of lentiviral cDNA in a host cell chromosome is a step of no return in the replication cycle. Integration is carried out by integrase (IN), an enzyme also playing an important role during nuclear import. Plenty of cellular cofactors of HIV-1 IN have been proposed. To date the lens epithelium-derived growth factor (LEDGF/p75) is the best studied cofactor of HIV-1 IN. Moreover, small molecules that block the LEDGF/p75-IN interaction (LEDGINs) have recently been developed for the treatment of HIV infection. The nuclear import factor transportin-SR2 (TRN-SR2) has been proposed as another cofactor of HIV IN mediating nuclear import of the virus. Using both IN cofactors as examples, we will describe the approaches to be taken to identify and validate novel cofactors as new antiviral targets.


Retrovirology | 2017

Identification of a tripartite interaction between the N-terminus of HIV-1 Vif and CBFβ that is critical for Vif function

Belete Ayele Desimmie; Jessica L. Smith; Hiroshi Matsuo; Wei-Shau Hu; Vinay K. Pathak

BackgroundHIV-1 Vif interacts with the cellular core-binding factor β (CBFβ) and counteracts the protective roles of certain human APOBEC3 (A3) proteins by targeting them for proteasomal degradation. Previous studies have identified some amino acids important for Vif–CBFβ interactions, and recently a co-crystal structure of a pentameric complex of HIV-1 Vif, CBFβ, Cul5, EloB, and EloC was resolved. However, a comprehensive analysis of Vif–CBFβ interactions that are important for Vif function has not been performed.ResultsHere, we carried out double-alanine scanning mutagenesis of the first 60 amino acids of Vif and determined their effects on interaction with CBFβ and their ability to induce A3G degradation as well as rescue HIV-1 replication in the presence of A3G. We found that multiple Vif residues are involved in the extensive N-terminal Vif–CBFβ interaction and that the 5WQVMIVW11 region of Vif is the major determinant. A minimum of three alanine substitutions are required to completely abrogate the Vif–CBFβ interaction and Vif’s ability to rescue HIV-1 infectivity in the presence of A3G. Mutational analysis of CBFβ revealed that F68 and I55 residues are important and participate in a tripartite hydrophobic interaction with W5 of Vif to maintain a stable and functional Vif–CBFβ complex. We also determined that CBFβ amino acids 73WQGEQR78, which are not resolved in the structure of the pentameric complex, are not involved in interaction with HIV-1 Vif.ConclusionsOur results provide detailed insight into the Vif–CBFβ interactions that are critical for Vif function and may contribute to the rational design of HIV-1 inhibitors that block Vif-mediated degradation of A3 proteins.

Collaboration


Dive into the Belete Ayele Desimmie's collaboration.

Top Co-Authors

Avatar

Zeger Debyser

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jonas Demeulemeester

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Frauke Christ

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Frauke Christ

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Arnaud Marchand

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Patrick Chaltin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Rik Gijsbers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Rik Schrijvers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sofie Vets

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Arnout Voet

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge