Belinda A. Henry
Monash University, Clayton campus
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Belinda A. Henry.
Journal of Neuroendocrinology | 2008
Belinda A. Henry; Iain J. Clarke
Over the past decade, adipose tissue has been shown to produce numerous factors that act as hormones. Many of these act on the brain to regulate energy balance via dual effects on food intake and energy expenditure. These include well‐characterised hormones such as leptin, oestrogen and glucocorticoids and novel factors such as adiponectin and resistin. This review provides a perspective on the role of these factors as lipostats.
Endocrinology | 2014
Steven Yau; Belinda A. Henry; Vincenzo C. Russo; Glenn K. McConell; Iain J. Clarke; George A. Werther; Matthew A. Sabin
Leptin is produced from white adipose tissue and acts primarily to regulate energy balance. Obesity is associated with leptin resistance and increased circulating levels of leptin. Leptin has recently been shown to influence levels of IGF binding protein-2 (IGFBP-2), a protein that is reduced in obesity and type 2 diabetes. Overexpression of IGFBP-2 protects against obesity and type 2 diabetes. As such, IGFBP-2 signaling may represent a novel pathway by which leptin regulates insulin sensitivity. We sought to investigate how leptin regulates skeletal muscle IGFBP-2 levels and to assess the impact of this on insulin signaling and glucose uptake. In vitro experiments were undertaken in cultured human skeletal myotubes, whereas in vivo experiments assessed the effect of intracerebroventricular leptin on peripheral skeletal muscle IGFBP-2 expression and insulin sensitivity in sheep. Leptin directly increased IGFBP-2 mRNA and protein in human skeletal muscle through both signal transducer and activator of transcription-3 and phosphatidylinositol 3-kinase signaling, in parallel with enhanced insulin signaling. Silencing IGFBP-2 lowered leptin- and insulin-stimulated protein kinase B phosphorylation and glucose uptake. In in vivo experiments, intracerebroventricular leptin significantly increased hind-limb skeletal muscle IGFBP-2, an effect completely blocked by concurrent peripheral infusion of a β-adrenergic blocking agent. Sheep receiving central leptin showed improvements in glucose tolerance and circulating insulin levels after an iv glucose load. In summary, leptin regulates skeletal muscle IGFBP-2 by both direct peripheral and central (via the sympathetic nervous system) mechanisms, and these likely impact on peripheral insulin sensitivity and glucose metabolism.
Endocrinology | 2011
Belinda A. Henry; Zane B. Andrews; Alexandra Rao; Iain J. Clarke
Leptin acts on the brain to increase postprandial heat production in skeletal muscle of sheep. To determine a mechanism for this effect, we examined the role of mitochondrial uncoupling and AMP-activated protein kinase (AMPK). Ovariectomized ewes (n=4/group) received infusion lines into the lateral cerebral ventricle, and leptin (10 μg/h) was infused to increase heat production in skeletal muscle. In animals that were program fed (1100-1600 h), skeletal muscle biopsies were taken after either central infusion of leptin or vehicle to measure the expression of uncoupling protein (UCP) mRNA and the phosphorylation status of AMPK. Respiratory function was also quantified in mitochondria isolated from skeletal muscle. Leptin infusion increased the expression of UCP2 and UCP3 mRNA as well as UCP3 protein but not UCP1 mRNA in muscle. Leptin also increased substrate-driven, coupled (ADP-driven), and uncoupled (oligomycin) respiration but had no effect on the total respiratory capacity. The respiratory control ratio was lower in leptin-treated (vs. vehicle-treated) animals, indicating a predominant effect on uncoupled respiration. There was no effect of central leptin treatment on AMPK phosphorylation. We then infused 5-aminoimidazole-4-carboxamide-1β-riboside (AICAR) (10 mg/h for 6 h) directly into the femoral artery and measured skeletal muscle temperature; muscle was also collected for isolated mitochondria studies. AICAR had no effect on heat production or substrate-driven, uncoupled, or total respiratory states in skeletal muscle mitochondria. However, AICAR increased ADP-driven (coupled) respiration in mitochondria. In conclusion, leptin acts at the brain to increase heat production in muscle through altered mitochondrial function, indicative of adaptive thermogenesis.
Endocrinology | 2010
Yue Qi; Belinda A. Henry; Brian J. Oldfield; Iain J. Clarke
It is widely accepted that leptin acts on first-order neurons in the arcuate nucleus (ARC) with information then relayed to other hypothalamic centers. However, the extent to which leptin mediates its central actions solely, or even primarily, via this route is unclear. We used a model of hypothalamo-pituitary disconnection (HPD) to determine whether leptin action on appetite-regulating systems requires the ARC. This surgical preparation eliminates the ARC. We measured effects of iv leptin to activate hypothalamic neurons (Fos labeling). In ARC-intact animals, leptin increased the percentage of Fos-positive melanocortin neurons and reduced percentages of Fos-positive neuropeptide Y neurons compared with saline-treated animals. HPD itself increased Fos labeling in the lateral hypothalamic area (LHA). Leptin influenced Fos labeling in the dorsomedial nucleus (DMH), ventromedial nucleus, and paraventricular nucleus (PVN) in HPD and normal animals, with effects on particular cell types varying. In the LHA and DMH, leptin decreased orexin cell activation in HPD and ARC-intact sheep. HPD abolished leptin-induced expression of Fos in melanin-concentrating hormone cells in the LHA and in CRH cells in the PVN. In contrast, HPD accentuated activation in oxytocin neurons. Our data from sheep with lesions encompassing the ARC do not suggest a primacy of action of leptin in this nucleus. We demonstrate that first order to second order signaling may not represent the predominant means by which leptin acts in the brain to generate integrated responses. We provide evidence that leptin exerts direct action on cells of the DMH, ventromedial nucleus, and PVN.
Endocrinology | 2012
Scott D. Clarke; Iain J. Clarke; Alexandra Rao; Michael A. Cowley; Belinda A. Henry
Adiposity is regulated in a sexually divergent manner. This is partly due to sex steroids, but the differential effects of androgens in males and females are unclear. We investigated effects of testosterone on energy balance in castrated male (n = 6) and female sheep (n = 4), which received 3 × 200 mg testosterone implants for 2 wk or blank implants (controls). Temperature probes were implanted into retroperitoneal fat and skeletal muscle. Blood samples were taken to measure metabolites and insulin. In males, muscle and fat biopsies were collected to measure uncoupling protein (UCP) mRNA and phosphorylation of AMP-activated protein kinase and Akt. Testosterone did not change food intake in either sex. Temperature in muscle was higher in males than females, and testosterone reduced heat production in males only. In fat, however, temperature was higher in the castrate males compared with females, and there was no effect of testosterone treatment in either sex. Preprandial glucose levels were lower, but nonesterified fatty acids were higher in females compared with males, irrespective of testosterone. In males, the onset of feeding increased UCP1 and UCP3 mRNA levels in skeletal muscle, without an effect of testosterone. During feeding, testosterone reduced glucose levels in males only but did not alter the phosphorylation of AMP-activated protein kinase or Akt in muscle. Thus, testosterone maintains lower muscle and fat temperatures in males but not females. The mechanism underlying this sex-specific effect of testosterone is unknown but may be due to sexual differentiation of the brain centers controlling energy expenditure.
Endocrinology | 2013
Scott D. Clarke; Iain J. Clarke; Alexandra Rao; Roger G. Evans; Belinda A. Henry
Estrogen is protective against weight gain, but the underlying mechanisms are not fully elucidated. We sought to characterize the effects of estrogen on energy expenditure in skeletal muscle and adipose tissue in ovariectomized sheep. Temperature probes were implanted into sc (gluteal) and visceral (retroperitoneal) fat depots and skeletal muscle of the hind limb (vastus lateralis). Food was available from 1100-1600 h to entrain postprandial thermogenesis. We characterized the effects of single (50 μg estradiol benzoate, im) and repeated (25 μg estradiol-17β, iv) injections as well as chronic (3 × 3 cm estradiol-17β implants for 7 d) treatment on heat production. A single injection of estrogen increased heat production in visceral fat and skeletal muscle, without an effect on food intake. Increased heat production in skeletal muscle was sustained by repeated estradiol-17β injections. On the other hand, continuous treatment reduced food intake but had no effect on thermogenesis. To determine possible mechanisms that underpin estradiol-17β-induced heat production, we measured femoral artery blood flow, the expression of uncoupling protein (UCP) mRNA and the phosphorylation of AMP-activated protein kinase and Akt in fat and muscle. There was little effect of either single or repeated injections of estradiol-17β on the expression of UCP1, -2, or -3 mRNA in visceral fat or skeletal muscle. Acute injection of estradiol-17β increased the phosphorylation of AMP-activated protein kinase and Akt in muscle only. Estradiol-17β treatment did not alter femoral artery blood flow. Thus, the stimulatory effect of estradiol-17β on thermogenesis in female sheep is dependent upon a pulsatile pattern of treatment and not constant continuous exposure.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012
Scott D. Clarke; Kevin Lee; Zane B. Andrews; Robert J. Bischof; Fahri Fahri; Roger G. Evans; Iain J. Clarke; Belinda A. Henry
This study aimed to determine whether postprandial temperature excursions in skeletal muscle are consistent with thermogenesis or altered blood flow. Temperature probes were implanted into the vastus lateralis muscle of ovariectomized ewes, and blood flow was assessed using laser-Doppler flowmetry (tissue flow) and transit-time ultrasound flowmetry (femoral artery flow). The animals were program-fed between 1100 and 1600, and temperature and blood flow were measured during intravenous administration of either isoprenaline or phenylephrine and during feeding and meal anticipation. In addition, muscle biopsies were collected prefeeding and postfeeding to measure uncoupling protein (UCP) expression and mitochondrial function, as well as indices of calcium cycling (ryanodine 1 receptor: RyR1 and sarcoendoplasmic calcium-dependent ATPases SERCA1/ SERCA2a). Isoprenaline increased femoral artery blood flow, whereas phenylephrine reduced blood flow. At high doses only, isoprenaline treatment increased heat production in muscle. Phenylephrine treatment did not alter muscle temperature. Meal anticipation was evoked in fasted animals (previously program-fed) that were housed beside animals that were fed. Increases in muscle temperature were elicited by feeding and meal anticipation, without changes in blood flow during either paradigm. Analyses of respiration in isolated mitochondria indicated that the postprandial increase in heat production was associated with an increase in state 4 respiration, without increased UCP1, UCP2, or UCP3 expression. Feeding increased the expression of RyR1 and SERCA2a. We conclude that excursions in muscle temperature may occur independent of blood flow, suggesting that postprandial heat production is driven by altered mitochondrial function and changes in calcium cycling.
Molecular metabolism | 2016
Pablo J. Enriori; Weiyi Chen; Maria C. Garcia-Rudaz; Bernadette E. Grayson; Anne E. Evans; Sarah M. Comstock; Ursel Gebhardt; Hermann L. Müller; Thomas Reinehr; Belinda A. Henry; Russell D. Brown; Clinton R. Bruce; Stephanie E. Simonds; Sara A. Litwak; Sean L. McGee; Serge Luquet; Sarah Martinez; Martin Jastroch; Matthias H. Tschöp; Matthew J. Watt; Iain J. Clarke; Christian L. Roth; Kevin L. Grove; Michael A. Cowley
Objective Central melanocortin pathways are well-established regulators of energy balance. However, scant data exist about the role of systemic melanocortin peptides. We set out to determine if peripheral α-melanocyte stimulating hormone (α-MSH) plays a role in glucose homeostasis and tested the hypothesis that the pituitary is able to sense a physiological increase in circulating glucose and responds by secreting α-MSH. Methods We established glucose-stimulated α-MSH secretion using humans, non-human primates, and mouse models. Continuous α-MSH infusions were performed during glucose tolerance tests and hyperinsulinemic-euglycemic clamps to evaluate the systemic effect of α-MSH in glucose regulation. Complementary ex vivo and in vitro techniques were employed to delineate the direct action of α-MSH via the melanocortin 5 receptor (MC5R)–PKA axis in skeletal muscles. Combined treatment of non-selective/selective phosphodiesterase inhibitor and α-MSH was adopted to restore glucose tolerance in obese mice. Results Here we demonstrate that pituitary secretion of α-MSH is increased by glucose. Peripheral α-MSH increases temperature in skeletal muscles, acts directly on soleus and gastrocnemius muscles to significantly increase glucose uptake, and enhances whole-body glucose clearance via the activation of muscle MC5R and protein kinase A. These actions are absent in obese mice, accompanied by a blunting of α-MSH-induced cAMP levels in skeletal muscles of obese mice. Both selective and non-selective phosphodiesterase inhibition restores α-MSH induced skeletal muscle glucose uptake and improves glucose disposal in obese mice. Conclusion These data describe a novel endocrine circuit that modulates glucose homeostasis by pituitary α-MSH, which increases muscle glucose uptake and thermogenesis through the activation of a MC5R-PKA-pathway, which is disrupted in obesity.
The FASEB Journal | 2014
T. Kevin Lee; Iain J. Clarke; Justin C. St. John; I. Ross Young; Brian L. Leury; Alexandra Rao; Zane B. Andrews; Belinda A. Henry
Subjects characterized as cortisol high responders (HRs) consume more calories after stress, but it is unknown whether cortisol responsiveness predicts a propensity for obesity. Female sheep with either high or low cortisol responses to adrenocorticotropin (ACTH) were identified. Body composition was similar in HRs and cortisol low responders (LRs), but the HRs had greater (P<0.01) adiposity than did the LRs (40.5±0.7 vs. 35.8±1.4%) after high‐energy feeding, despite comparable food intake. Postprandial thermogenesis in muscle temperature was 0.8 ± 0.08°C higher in the LRs than in the HRs (P<0.01), whereas feeding‐induced changes in fat temperature were similar. Leptin and insulin sensitivity were similar in the HRs and LRs. Feeding lowered (P<0.001) the respiratory control ratio in muscle (HRs 9.2±0.8–5.2±1.2; LRs 8.4±0.5–5.2±0.7), indicative of increased uncoupled respiration. Also in muscle, the feeding‐induced increases in uncoupling protein (UCP)‐3 (fold increase: HRs, 2.4; LRs, 2.0), ryanodine 1 receptor (RyR1; fold increase: HRs 3.1; LRs 2.1), and sarcoendoplasmic reticulum Ca2+‐dependent ATPase (fold increase: HRs 1.5; LRs 1.6) were equivalent in the HRs and LRs. Sequencing of mitochondrial DNA revealed no haplotypic differences between the 2 groups. We conclude that predisposition to obesity can be predicted by cortisol responsiveness to an ACTH challenge and that the response is due to innate differences in muscle thermogenesis.—Lee, T. K., Clarke, I. J., St. John, J., Young, I. R., Leury, B. L., Rao, A., Andrews, Z. B., Henry, B. A. High cortisol responses identify propensity to obesity that is linked to thermogenesis in skeletal muscle. FASEB J. 28, 35–44 (2014). www.fasebj.org
Clinical and Experimental Pharmacology and Physiology | 2010
Iain J. Clarke; Belinda A. Henry
1. To date, an effective therapeutic agent that induces weight loss in obese subjects remains elusive. In order to establish a successful means to combat obesity, it is imperative that we identify novel targets that regulate energy balance.