Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Belinda Bullard is active.

Publication


Featured researches published by Belinda Bullard.


Cell | 1987

Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate

Elizabeth Ball; Christine C. Karlik; Clifford J. Beall; Donna L. Saville; John C. Sparrow; Belinda Bullard; Eric Fyrberg

Flight muscles of some insects contain a myofibrillar protein termed arthrin, which is closely related to actin (mw 43,000). Here we demonstrate that arthrin (mw 55,000) is ubiquitinated actin. We show that in Act88FM342, a flightless Drosophila mutant wherein the Act88F actin gene specifies a glu93----lys replacement, isoelectric points of both actin III and arthrin are shifted, revealing that both are encoded by the same gene. Arthrin reacts with an anti-ubiquitin antibody, which demonstrates that its extra mass results from ubiquitin ligation. Approximately one-seventh of myofibrillar actin is stably ubiquitinated, suggesting that there may be one arthrin molecule per actin-tropomyosin-troponin cooperative unit. Arthrin formation lags several hours behind that of actin III, implying that ubiquitination coincides with some aspect of myofibril assembly.


Journal of Molecular Biology | 1988

Troponin of asynchronous flight muscle

Belinda Bullard; Kevin Leonard; Audrey Larkins; Geoffrey W. Butcher; Christine C. Karlik; Eric Fyrberg

Troponin has been prepared from the asynchronous flight muscle of Lethocerus (water bug) taking special care to prevent proteolysis. The regulatory complex contained tropomyosin and troponin components. The troponin components were Tn-C (18,000 Mr), Tn-T (apparent Mr 53,000) and a heavy component, Tn-H (apparent Mr 80,000). The troponin was tightly bound to tropomyosin and could not be dissociated from it in non-denaturing conditions. A complex of Tn-T, Tn-H and tropomyosin inhibited actomyosin ATPase activity and the inhibition was relieved by Tn-C from vertebrate striated muscle in the presence of Ca2+. However, unlike vertebrate Tn-I, Tn-H by itself was not inhibitory. Monoclonal antibodies were obtained to Tn-T and Tn-H. Antibody to Tn-T was used to screen an expression library of Drosophila cDNA cloned in lambda phage. The sequence of cDNA coding for the protein was determined and hence the amino acid sequence. The Drosophila protein has a sequence similar to that of vertebrate skeletal and cardiac Tn-T. The sequence extends beyond the carboxyl end of the vertebrate sequences, and the last 40 residues are acidic. Part of the sequence of Drosophila Tn-T is homologous to the carboxyl end of the Drosophila myosin light chain MLC-2 and one anti-Tn-T antibody cross-reacted with the light chain. Lethocerus Tn-H is related to the large tropomyosins of Drosophila flight muscle, for which the amino acid sequence is known, since antibodies that recognize this component also recognize the large tropomyosins. Tn-H is easily digested by calpain, suggesting that part of the molecule has an extended configuration. Electron micrographs of negatively stained specimens showed that Lethocerus thin filaments have projections at about 39 nm intervals, which are not seen on thin filaments from vertebrate striated muscle and are probably due to the relatively large troponin complex. Decoration of the thin filaments with myosin subfragment-1 in rigor conditions appeared not to be affected by the troponin. The troponin of asynchronous flight muscle lacks the Tn-I component of vertebrate striated muscle. Tn-H occurs only in the flight muscle and may be involved in the activation of this muscle by stretch.


The EMBO Journal | 1990

Identification and localization of high molecular weight proteins in insect flight and leg muscle.

A Lakey; C Ferguson; Siegfried Labeit; M Reedy; A Larkins; G Butcher; Kevin Leonard; Belinda Bullard

Thick and thin filaments in asynchronous flight muscle overlap nearly completely and thick filaments are attached to the Z‐disc by connecting filaments. We have raised antibodies against a fraction of Lethocerus flight muscle myofibrils containing Z‐discs and associated filaments and also against a low ionic strength extract of myofibrils. Monoclonal antibodies were obtained to proteins of 800 kd (p800), 700 kd (p700), 400 kd (p400) and alpha‐actinin. The positions of the proteins in Lethocerus flight and leg myofibrils were determined by immunofluorescence and electron microscopy. p800 is in connecting filaments of flight myofibrils and in A‐bands of leg myofibrils. p700 is in Z‐discs of flight myofibrils and an immunologically related protein, p500, is in leg muscle Z‐discs. p400 is in M‐lines of both flight and leg myofibrils. Preliminary DNA sequencing shows that p800 is related to vertebrate titin and nematode twitchin. Molecules of p800 could extend from the Z‐disc a short way along thick filaments, forming a mechanical link between the two structures. All three high molecular weight proteins probably stabilize the structure of the myofibril.


The EMBO Journal | 1993

Kettin, a large modular protein in the Z-disc of insect muscles.

A Lakey; Siegfried Labeit; Mathias Gautel; Charles Ferguson; D P Barlow; Kevin Leonard; Belinda Bullard

Z‐discs of insect flight muscle contain a large protein of 500–700 kDa. Monoclonal antibodies label an epitope in the molecule at the Z‐disc in Drosophila and Lethocerus (waterbug). A partial cDNA of 1.6 kb from the Drosophila gene has been cloned and sequenced. The corresponding amino acid sequence has a modular structure composed of four conserved repeats of 95 amino acids homologous to immunoglobulin C2 domains (called class II domains in muscle proteins), separated by less conserved linker sequences of 35 amino acids. An expressed class II domain with flanking linker sequences binds to actin and alpha‐actinin but not to myosin. Single molecules of the protein would be large enough to span the Z‐disc. We suggest that the protein acts as scaffolding in the Z‐disc and we call the protein kettin. The Ca2+ activated protease, calpain, disrupts the Z‐disc of striated muscle, releasing alpha‐actinin intact. Calpain digests kettin to a series of peptides of between 30 and 170 kDa which are released from the myofibril. Digestion of kettin may cause disintegration of the Z‐disc and alpha‐actinin release which lead to disassembly of the myofibril.


Journal of Molecular Biology | 2003

Structure of a Drosophila sigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidation products

Bogos Agianian; Paul A. Tucker; Arie Schouten; Kevin Leonard; Belinda Bullard; Piet Gros

Insect glutathione-S-transferases (GSTs) are grouped in three classes, I, II and recently III; class I (Delta class) enzymes together with class III members are implicated in conferring resistance to insecticides. Class II (Sigma class) GSTs, however, are poorly characterized and their exact biological function remains elusive. Drosophila glutathione S-transferase-2 (GST-2) (DmGSTS1-1) is a class II enzyme previously found associated specifically with the insect indirect flight muscle. It was recently shown that GST-2 exhibits considerable conjugation activity for 4-hydroxynonenal (4-HNE), a lipid peroxidation product, raising the possibility that it has a major anti-oxidant role in the flight muscle. Here, we report the crystal structure of GST-2 at 1.75A resolution. The GST-2 dimer shows the canonical GST fold with glutathione (GSH) ordered in only one of the two binding sites. While the GSH-binding mode is similar to other GST structures, a distinct orientation of helix alpha6 creates a novel electrophilic substrate-binding site (H-site) topography, largely flat and without a prominent hydrophobic-binding pocket, which characterizes the H-sites of other GSTs. The H-site displays directionality in the distribution of charged/polar and hydrophobic residues creating a binding surface that explains the selectivity for amphipolar peroxidation products, with the polar-binding region formed by residues Y208, Y153 and R145 and the hydrophobic-binding region by residues V57, A59, Y211 and the C-terminal V249. A structure-based model of 4-HNE binding is presented. The model suggest that residues Y208, R145 and possibly Y153 may be key residues involved in catalysis.


Journal of Cell Biology | 2001

Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle

Michael Kulke; Ciprian Neagoe; Bernhard Kolmerer; Ave Minajeva; Horst Hinssen; Belinda Bullard; Wolfgang A. Linke

Kettin is a high molecular mass protein of insect muscle that in the sarcomeres binds to actin and α-actinin. To investigate kettins functional role, we combined immunolabeling experiments with mechanical and biochemical studies on indirect flight muscle (IFM) myofibrils of Drosophila melanogaster. Micrographs of stretched IFM sarcomeres labeled with kettin antibodies revealed staining of the Z-disc periphery. After extraction of the kettin-associated actin, the A-band edges were also stained. In contrast, the staining pattern of projectin, another IFM–I-band protein, was not altered by actin removal. Force measurements were performed on single IFM myofibrils to establish the passive length-tension relationship and record passive stiffness. Stiffness decreased within seconds during gelsolin incubation and to a similar degree upon kettin digestion with μ-calpain. Immunoblotting demonstrated the presence of kettin isoforms in normal Drosophila IFM myofibrils and in myofibrils from an actin-null mutant. Dotblot analysis revealed binding of COOH-terminal kettin domains to myosin. We conclude that kettin is attached not only to actin but also to the end of the thick filament. Kettin along with projectin may constitute the elastic filament system of insect IFM and determine the muscles high stiffness necessary for stretch activation. Possibly, the two proteins modulate myofibrillar stiffness by expressing different size isoforms.


Journal of Muscle Research and Cell Motility | 1998

Interaction of troponin-H and glutathione S-transferase-2 in the indirect flight muscles of Drosophila melanogaster

Jonathan D. Clayton; Richard M. Cripps; John C. Sparrow; Belinda Bullard

SummaryDrosophila indirect flight muscles (IFMs) contain a 35 kDa protein which cross-reacts with antibodies to the IFM specific protein troponin-H isoform 34 (TnH-34). Peptide fingerprinting and peptide sequencing showed that this 35 kDa protein is glutathione S-transferase-2 (GST-2). GST-2 is present in the asynchronous indirect flight muscles but not in the synchronous tergal depressor of the trochanter (jump muscle). Genetic dissection of the sarcomere showed that GST-2 is stably associated with the thin filaments but the presence of myosin is required to achieve the correct stoichiometry, suggesting that there is also an interaction with the thick filament. The two Drosophila TnHs (isoforms 33 and 34) are naturally occurring fusion proteins in which a proline-rich extension of ~250 amino acids replaces the 27 C-terminal residues of the muscle-specific tropomyosin II isoform. The proteolytic enzyme, Igase, cleaves the hydrophobic C-terminal sequence of TnH-34 at three sites and TnH-33 at one site. This results in the release of GST-2 from the myofibril. The amount of GST-2 stably bound to the myofibril is directly proportional to the total amount of undigested TnH. It is concluded that GST-2 in the thin filament is stabilized there by interaction with TnH. We speculate that the hydrophobic N-terminal region of GST-2 interacts with the hydrophobic C-terminal extension of TnH, and that both are close to a myosin cross-bridge.


The EMBO Journal | 2004

A troponin switch that regulates muscle contraction by stretch instead of calcium.

Bogos Agianian; Uroš Kržič; Feng Qiu; Wolfgang A. Linke; Kevin Leonard; Belinda Bullard

The flight muscles of many insects have a form of regulation enabling them to contract at high frequencies. The muscles are activated by periodic stretches at low Ca2+ levels. The same muscles also give isometric contractions in response to higher Ca2+. We show that the two activities are controlled by different isoforms of TnC (F1 and F2) within single myofibrils. F1 binds one Ca2+ with high affinity in the C‐terminal domain and F2 binds one Ca2+ in the C‐terminal domain and one exchangeable Ca2+ in the N‐terminal domain. We have characterised the isoforms and determined their effect on the development of stretch‐activated and Ca2+‐activated tension by replacing endogenous TnC in Lethocerus flight muscle fibres with recombinant isoforms. Fibres with F1 gave stretch‐activated tension and minimal isometric tension; those with F2 gave Ca2+‐dependent isometric tension and minimal stretch‐activated tension. Regulation by a TnC responding to stretch rather than Ca2+ is unprecedented and has resulted in the ability of insect flight muscle to perform oscillatory work at low Ca2+ concentrations, a property to which a large number of flying insects owe their evolutionary success.


Journal of Muscle Research and Cell Motility | 2003

Varieties of elastic protein in invertebrate muscles

Belinda Bullard; Wolfgang A. Linke; Kevin Leonard

Elastic proteins in the muscles of a nematode (Caenorhabditis elegans), three insects (Drosophila melanogaster, Anopheles gambiae, Bombyx mori) and a crustacean (Procambus clarkii) were compared. The sequences of thick filament proteins, twitchin in the worm and projectin in the insects, have repeating modules with fibronectin-like (Fn) and immunoglobulin-like (Ig) domains conserved between species. Projectin has additional tandem Igs and an elastic PEVK domain near the N-terminus. All the species have a second elastic protein we have called SLS protein after the Drosophila gene, sallimus. SLS protein is in the I-band. The N-terminal region has the sequence of kettin which is a spliced product of the gene composed of Ig-linker modules binding to actin. Downstream of kettin, SLS protein has two PEVK domains, unique sequence, tandem Igs, and Fn domains at the end. PEVK domains have repeating sequences: some are long and highly conserved and would have varying elasticity appropriate to different muscles. Insect indirect flight muscle (IFM) has short I-bands and electron micrographs of Lethocerus IFM show fine filaments branching from the end of thick filaments to join thin filaments before they enter the Z-disc. Projectin and kettin are in this region and the contribution of these to the high passive stiffness of Drosophila IFM myofibrils was measured from the force response to length oscillations. Kettin is attached both to actin near the Z-disc and to the end of thick filaments, and extraction of actin or digestion of kettin leads to rapid decrease in stiffness; residual tension is attributable to projectin. The wormlike chain model for polymer elasticity fitted the force-extension curve of IFM myofibrils and the number of predicted Igs in the chain is consistent with the tandem Igs in Drosophila SLS protein. We conclude that passive tension is due to kettin and projectin, either separate or linked in series.


Biochemical Journal | 2003

Troponin C in different insect muscle types: identification of two isoforms in Lethocerus, Drosophila and Anopheles that are specific to asynchronous flight muscle in the adult insect.

Feng Qiu; Anne Lakey; Bogos Agianian; Amanda Hutchings; Geoffrey W. Butcher; Siegfried Labeit; Kevin Leonard; Belinda Bullard

The indirect flight muscles (IFMs) of Lethocerus (giant water bug) and Drosophila (fruitfly) are asynchronous: oscillatory contractions are produced by periodic stretches in the presence of a Ca(2+) concentration that does not fully activate the muscle. The troponin complex on thin filaments regulates contraction in striated muscle. The complex in IFM has subunits that are specific to this muscle type, and stretch activation may act through troponin. Lethocerus and Drosophila have an unusual isoform of the Ca(2+)-binding subunit of troponin, troponin C (TnC), with a single Ca(2+)-binding site near the C-terminus (domain IV); this isoform is only in IFMs, together with a minor isoform with an additional Ca(2+)-binding site in the N-terminal region (domain II). Lethocerus has another TnC isoform in leg muscle which also has two Ca(2+)-binding sites. Ca(2+) binds more strongly to domain IV than to domain II in two-site isoforms. There are four isoforms in Drosophila and Anopheles (malarial mosquito), three of which are also in adult Lethocerus. A larval isoform has not been identified in Lethocerus. Different TnC isoforms are expressed in the embryonic, larval, pupal and adult stages of Drosophila; the expression of the two IFM isoforms is increased in the pupal stage. Immunoelectron microscopy shows the distribution of the major IFM isoform with one Ca(2+)-binding site is uniform along Lethocerus thin filaments. We suggest that initial activation of IFM is by Ca(2+) binding to troponin with the two-site TnC, and full activation is through the action of stretch on the complex with the one-site isoform.

Collaboration


Dive into the Belinda Bullard's collaboration.

Top Co-Authors

Avatar

Kevin Leonard

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siegfried Labeit

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bogos Agianian

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

David Goulding

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Feng Qiu

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge